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THE DIVERSITY ECCM PERFORMANCE OF FREQUENCY-HOPPING CPFSK

IN PARTIAL-BAND NOISE JAMMING

1.1 BACKGROUND1.0 INTRODUCTION

While frequency-hopped MFSK (M-ary frequency-shift keying) waveforms are

widely discussed as candidates for spread spectrum applications, there are many

current applications in which the chosen hop modulation is narrowband digital

FM, or CPFSK (continuous phase FSK) in its many forms, most notably Army

tactical radios. In addition to offering efficient use of the available

spectrum, it has been estimated that limiter-discriminator detection of a

hopped CPFSK waveform can obtain a 4 dB improvement in performance over MFSK

systems in noise jamming [21]. However, the few published analyses giving

results for FH/CPFSK are either based on approximations or neglect thermal

noise. We know of none that address tone jamming of FH/CPFSK.

For the optimal utilization and design of these systems, it is desirable

to discover what parameter values work best under jamming. Figure 1.1-1

illustrates a slow-hopping FH/CPFSK system without diversity. Shown in the

figure are optional transmitter elements associated with transmission bandwidth

control. The primary transmission parameter is the normalized maximum frequency S

deviation, h= 2f T, where T is the bit time. The signal bandwidth is propor-d

tional to h. At the receiver, an I.F. (intermediate frequency) filter excludes

unwanted receiver conversion products and controls the amount of noise admitted. I

If the bandwidth, WIF, of this filter is large, the received FM waveform

passes through to the detector undistorted. If the bandwidth is decreased,

less noise is admitted but the resulting distortion of the waveform gives
%ell
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rise to intersymbol interference. Thus there are optimum values of h and

the product WIFT which are traded off against one another. Without hopping

or jamming, it has been shown the h = 0.7 and WIFT = 1.0 are best values [3].

With worst-case partial-band jamming but neglecting thermal noise, it has
been asserted that h = 0.6 and WIFT = 0.75 are best values [22].

1.2 RATIONALE FOR THE STUDY

We have mentioned previously that detailed analyses of hopped CPFSK 0

systems under various kinds of jamming and also system or thermal noise are

not available in the current literature. Because of the potential advantages

offered by CPFSK over MFSK and because many current hopped and unhopped radio

systems employ some form of CPFSK, it is important to expand the knowledge of

the performance that can be expected from FH/CPFSK systems, and what parameter

values are optimum.

Noncoherent detection of CPFSK can be performed using a limiter-discrimi-

nator with integrate-and-dump filtering, or by differential detection. In

either case, a difference L: in the total I.F. waveform phase is extracted

which, in the absence of noise and/or distortion, would convey the transmitted

binary information. Normally, that is, without repetition or diversity, a

hard decision is made based on the sign of A. Typically A¢ is corrupted by

noise projected onto the phase of the signal by the action of the bandpass

limiter which precedes the discriminator. Now, since the phase of a carrier

is inherently ambiguous (modulo 27), it can be written

L= (') mod2, + 27N, (1.2-1) .%

where N is the net number of positive 2r phase rotations or "clicks" in the

bit interval; usually N is taken to be a negative random (Poisson) integer

3-.- ,
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if the data gives A¢ > 0, and positive if A < 0. For high carrier-to-noise

ratios (CNR), the probability that N is nonzero becomes very small. It has it

been argued then that the limiter-discriminator detection, in effect, limits

or clips the phase noise, and therefore that jamming effects i.n an FH/CPFSK "

system will be suppressed. Our study tests this hypothesis by postulating

and evaluating an FH/CPFSK system with soft-decision diversity combining

of received L samples, implementing the decision rule %r

bit = 1

SUM 0. (1.2-2)
k bit = 0

In our analysis and computations forming the body of this report, we

follow a rigorous treatment of the system, including background noise, 4

intersymbol interference, and FM noise clicks. We consider linear combining

of receiver samples for both 7imiter-discriminator and differential detection

types of CPFSK receivers, since both are used in current tactical FH/CPFSK

radios. Y .

4S
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1.3 SYSTEM STUDIED

In view of the importance of the FH/CPFSK waveform to tactical military

communications, and of the potential for diversity improvements in hopping

system performance against jamming, we have undertaken the studies summarized

in this report. The following material briefly describes the system studied.

1.3.1 Transmission Scheme

Our studies concern the jammed performance of hopped binary FM communica-

tions, particularly under the assumption of partial-band noise jamming and the

Muse of (time) diversity to mitigate the jamming. Figure 1.3-1 gives a block

. diagram of the transmission scheme for the system. Binary data, after error-

control coding, is to be transmitted using slow-frequency-hopping digital FM,

or CPFSK. The coded symbols are to be repeated on L different hops in order

to increase the likelihood that some of the symbols are free of jamming. The
.7-

figure suggests one of many possible ways to accomplish this objective.

According to the version shown in the figure, the coded symbols are first read

into a Q-bit shift register (Q-symbol buffer), where Q is the number of symbols

that can be transmitted in one hop period. For example, if the channels allotted

to the system support 20 kbps digital FM signalling, and the hop rate is

100 hops/sec, then Q could be 200.

When the Q symbols have all been generated at rate Rc and stored in the
input buffer, they are then transferred to a second (output) buffer. The

transmitter logic reads this buffer L times at the rate LRc , and this stream
I-..-

a
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of data "chips" is used to frequency-modulate the selected carrier

frequency, which is changed (hopped) to a new, pseudorandomly-selected value

after Q chips have been transmitted. In this manner, L copies of the Q-symbol

sequence have been transmitted on L different, successive hops. Although

U Figure 1.3-1 suggests that the Q symbols are repeated in the same order on

each hop, it is of course possible with a more sophisticated system to permute

,~ the symbols or otherwise scramble them so that the ordering of the symbols is

different on each hop.

We note that certain fundamental relationships exist among the digital

N1^ rates at various points in the transmission logic, and among the energies in the

transmitted waveform which correspond to each rate. The symbols actually trans-

mitted are keyed at the rate Rd which, as we have already noted, is a basic

specification of the communications channels being used for hopping. The

original symbol rate is Rc = Rd/L, on account of the repetitions. Viewed another

way, the energy transmitted per chip is the fraction I/L of the coded symbol

36. energy. If the error control code rate is r, then the original bit rate is

Rb = Rcr = r R d/L. (1.3-1)

.For example, for R = 20 kbps, r = 112, and L=5, Rc 
= 4 kbps; between the

coding and the repetitions, the bit energy gets split up into 10 pieces in this

example.

1.3.2 Reception scheme

It is obvious that synchronization and timing are especially important

to the type of waveform we are considering. The receiver, diagrammed in

i? 7

% .......
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Figure 1.3-2, must accurately synthesize local oscillator frequencies in order

to dehop the signal at the proper times, and must then be capable of sampling #

the demodulator output at the ends of each chip interval. These samples, QL

of them for L complete hops, are buffered so that the receiver logic can in some

manner combine the L chips belonging to a particular code symbol. -

As the figure suggests, binary decisions can be made on each chip as it

is received. The resulting logic and buffering for such a "hard decision"

procedure is simpler than that required for a "soft decision" scheme, which

involves A/D conversion of the samples and storing the resulting QL multi-bit

words, one per chip. With either hard or soft chip processing, after diversity

combining there is the option to do binary decoding of code symbol decisions, or

soft-decision decoding of code symbol metrics produced by the combining.

.'U.

I.. ,'
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1.4 SUMMARY AND RECOMMENDATIONS

1.4.1 Main Conclusion 4

Our work thus far on FH/CPFSK systems with diversity, documented in

this report, has determined that linear combining or summing of the diversity

components (chips) of each bit does not yield an improvement in uncoded

system performance against worst-case partial-band noise jamming. This

conclusion holds for both limiter-discriminator and differential detection

techniques.

1.4.2 Achievements

In developing analytical and computational methods for the calculations

which produced this conclusion, we have made considerable advances in the

methodology for evaluating FH/CPFSK and CPFSK systems. These include:

(a) Independent derivations of both integral and series forms of the

differential phase probability density function, showing explicitly the

effect of taking the phase to be modulo 2r.

(b) Explicit derivations and formulas for intersymbol interference-related

SNR and differential phase parameters for all eight of the possible adjacent

bit data patterns, and arbitrary I. F. filter transfer functions.

(c) An independent and detailed derivation of FM noise click rates and

average number of positive clicks, and development of the notion of "signifi-

cant clicks" in computation of the error probability.

(d) A general formulation of the L hop/bit FH/CPFSK jammed error probability

valid for any diversity combining technique.

(e) An original derivation of the diversity sum jammed error probability

for FH/CPFSK using differential detection.

(f) Comparison of exact and simplified performance calculations (the

10 4

J.r
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exact require much computer time and effort; the simplified can be done on

a programmable calculator).

.2 (g) Development of a computer program based on the discrete Fourier

u transform for evaluating the probability of error, which is useful for all
sum metrics.

(h) Demonstration that, if perfect side information is used, there is

a diversity gain for FH/CPFSK.

1.4.3 Recommendations

The diversity sum method for combining the L chips for a given FH/CPFSK

bit can be regarded as implementing a form of soft-decision metric. Note

that the summing operation does not utilize any side information on whether

a particular chip is jammed, or how strongly it is jammed. Since there is

no mechanism for excluding or otherwise treating jammed chips differently,

when one or more chips are subject to jamming, the entire metric is corrupted,

and this accounts for the failure of the linear combining (simple sum) metric

to provide a diversity improvement.

Now, it is a fact that if instead of soft-decision combining of the

chips, we combine hard decisions on each chip, for high Eb/N 0 (15 dB or more)

a diversity gain results, in the sense that for a particular J/S ratio L > 1

* may yield a lower bit error probability. The improvement is due to the hard

decisions' limiting a jammed chip to "one vote" in the sum of hard decisions.

Since no side information is required, this simple ECCM scheme is very

attractive, except for the fact that noncoherent combining losses are high

for hard-decision metrics, relative to soft decisions.

It can be shown that a "perfect side information" soft-decision scheme

which includes only unjammed chips in the sum can provide greater diversity
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IL

gain than the hard-decision combining strategy. Therefore, some practical A

method which combines analog chip samples or soft decisions is likely to

exist for improving FH/CPFSK performance in partial-band jamming more than

the hard-decision metric does. Such metrics have been found for noncoherent

FH/BFSK [23,24], including a "self-normalizing" technique which does not

require side information. Therefore, we recommend that further studies of P

the type given in this report be conducted of soft-decision diversity i

combining metrics for FH/CPFSK which have the potential for improved perform-

ance in jamming.

-,
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2.0 MODELLING AND PRELIMINARY ANALYSES

In this section, we describe the modelling assumptions used to analyze

the performance of frequency-hopped continuous phase frequency-shift keying

(FH/CPFSK) in the presence of thermal noise and partial-band noise jamming.

Limiter-discriminator (LD) detection is assumed. Certain preliminary analyses

are conducted to predict the effects of intersymbol interference (ISI) on the

detected waveform, and to derive the distribution of the noise projected onto

N the signal phase.

2.1 DESCRIPTION OF SYSTEM WAVEFORMS

For discussion purposes, we consider first the simplified system model

depicted in Figure 2.1-1.

2.1.1 Overview of System Operation

binary data source outputting the sequence Idk modulates an FM

transmitter with the NRZ bipolar data waveform d(t), where

d(t) = d p(t-kT), d= + 1, (2.1-1)
k ,k

k

and the pulse function p(t) is assumed to be rectangular:

p(t) = u(t)-u(t-T)

= rect(t-T/2), (2.1-2)

with u(t) the unit step function. The interval T is the bit duration, so

that the data rate is Rb = 1/T. Although much attention is being directed

13
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currently at reducing the transmitted bandwidth of binary FM signals by

employing non-rectangular p(t) and by correlative coding of the data, here

we will assume the p(t) as given and will treat the dk bit values as having

been generated independently. (A more detailed discussion of the generation

of the data will be presented below.)

The resulting modulated carrier frequency is given by

f(t) = f + fd d(t), (2.1-3)

and the commonly accepted measure of relative frequency deviation is the

modualtion index .

h = /R 2fdT (2.1-4)
.;b d ,

Thus the emitted waveform (neglecting any post-modulator filters or distortion, S

and without frequency hopping of the carrier fo) is A.

s(t) = const , cos 27 f0t + 2 fd f d- d (T) (2.1-5)

Ideally, the frequency hopping and dehopping operations shown in Figure

2.1-1 are in perfect synchronism (with the propagation delay accounted for), and

are therefore "transparent" in the sense that whether the carrier is fixed or ; '-

hopped should not affect system operation. ,- -',

.. %

r~ % %'
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Against a noise jammer occupying a portion of the RF band over which the

system is hopping, the hopping and dehopping result in the following total

waveform prior to intermediate frequency (I.F.) filtering, overlooking harmonics i-;
to be rejected by that filtering:

r(t) = A cos{2rfot + e + em(t)} + n(t). (2.1-6)

& -. ,

In this formulation, we show an undistorted signal term; eO is a random phase

offset left over from the downconversion and dehopping, and for convenience

we define

m(t) 2-f dT d(T). (2.1-7)

The noise term n(t) is given by

no(t), hop was not jammed

n(t) -

no(t) + nj(t), hop was jammed. (2.1-8) .-- ,

The background and receiver additive bandpass noise term no(t) and the 4

jamming bandpass noise term nd(t) are assumed to have flat spectra going into

the I.F. filter, with two-sided spectrum levels NO/2 and N0 j/ 2 , respectively.

Conceptually, the received signal - with more or less noise, depending

on whether the signal was jammed or not on a particular hop - is filtered and

demodulated to recover an estimate d(t) of the data waveform d(t) sent originally ,,_

by the transmitter. The information in d(t) is then extracted by receiver

processing.

I,,.,

16
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Now we must go into considerably more detail to describe the structure

of the data sequence and its relation to the hopping scheme. Following that,

we discuss the distortion effects of receiver filtering and describe the

receiver processing in further detail.

2.1.2 The I.F. Filter Output, Signal Term

The I.F. filtering operation is intended to reject all but the selected

signal. Its finite bandwidth is taken to be its noise bandwidth WIF 2B0 ,

N{ where the bandpass filter transfer function H(f) is modelled in terms of a

lowpass filter transfer function H0 (f) by the relation

H(f) = Ho(f-f o) + Ho(f+fo); (2.1-9a)

that is, its impulse response is considered to be

h(t) = 2ho(t ) Cos K0 t ,  (2.1-9b)

and ho(t) is the lowpass filter impulse response corresponding to Ho(f).

Accordingly, the noise bandwidth B0 is given by

>. B0  df Ho(f) IHo(O) (2.a1c

For example, if the lowpass filter has the Gaussian shape

2
-tf:/8Bc

H 0(f) =e , (2.1-11

then the 3 dB bandwidth B3 is 0.9294 times the noise bandwidth B0 . For an

n-pole Butterworth filter with transfer function

P 4.

17
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Ho (f 2fB 2n]- -2

= [I + (f/B3) (2.1-12a)

the noise bandwidth is related to the 3 dB bandwidth by

B0 = B3 (1/2r) /sin(T/2n)

= 1.5708 B3 n 1 '

= 1.1107 B3, n = 2 ,-' "

= 1.0472 B3, n = 3 (2.1-12b)

= 1.0262 B3, n = 4. A

Now, since, theoretically, the FM signal waveform has infinite bandwidth

the I.F. filtering rejects not only unwanted signals but also portions of the

desired signal. Therefore the filtering introduces distortion; for the common

modelling assumptions we are making, in effect the distortion caused by the ... '

finite I.F. bandwidth represents all the distortion suffered by the waveform -'

at least all distortion due to filtering - just as the noise at I.F. represents *'

all noise present.

The signal part of the filter output is found explicitly by the following

development for the signal term (using (*) to denote convolution):

s(t)*h(t) J d: 2ho(t-T) Coswo(t-T) A cos[woT + e0 + em(t)] -

2A dT ho(t-T) cOSem(t) cosWo(t-T) cos(WoT+eO )

t ,>

-2A dT ho(t-T) sinem(T) COSWo(t-T) sin(woT+e O) .

N N
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-t

- A dtr h0 (t-t) cose m() { cos(wot+e0 )+ cos[w 0 (2T-t)+Q0 ]}

t

-A d& ho(t-t) sinem(T){sin(wot+eo)+sin[wo(2T-t)+80 ]}

=A cos(Wot+eo)I dT h0(t-T) cOSe (T)

-Om

- A sin(kot+60) d ho(t-t) sinem(T)

ftc
w a(t) A cos[w0 t+e 0 +(t)], f0 >> B, (2.1-13)

where

a (t) [h0(t) * cos,m(t)] + [h0(t )  sinem(t)]2  (2.1-14a) '

and

:(t) = tan-Zdn0(t ) * msinzm(t)]/[ho(t) * cosem(t)]} . (2.1-14b)

% From this development we see that the filter distorts the signal phase waveform

from (t) to (t), and induces amplitude modulation a(t).
,.

For most cases of practical interest, it is sufficient to consider inter-

symbol interference effects (i.e., the overlapping of filter responses from

different bit intervals) due to immediately adjacent bits [1]. Therefore, in

what follows we consider bit patterns which are the periodic extensions of the

patterns

111, 000 (all one's or zeros); (2.1-15a) ,;

010, 101 (alternating one's and zeros); (2.1-15b)
-. and 0110, 1001, 1100, 0011. (2.1-15c)

The "present bit" in these sequences is indicated by the underlining. The patterns el

in (2.1-15) were chosen because they generate the eight possible 3-bit patterns '%

in a very simple manner and can be analyzed easily.

19
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Using the steady-state filtering approach of Tjhung and Wittke [2] and

Pawula [3], we recognize that if the Fourier series for the periodic extension

of the i:th patterns yields (assuming evenness of e about t =O)

sin Pit) Z kL cos(2irkf t) (2.1-16a)
k= 1

and (i) o(fp
C O S A, 0t ) c o(: t )( .1 1 b

k=1

where f is the appropriate fundamental frequency of o0)(t), then the responses
p m

of the lowpass filter ho(t) to these components are

ui(t ) = ho(t),sine(i)(t W,

= Z IHo(kfp)Iclxi) cos[2rkfpt- B(kfp)] (2.1-17a) C

-C k=1p

and vi(t ho(t) * cose )(t)

: z H(kfp) (i) cos[27kfpt - B(kfp)] (2.1-17b)

k=1 -

where B(f) is the filter phase delay. For convenience, we shall employ the

alternative notations
u(t;pattern i) --ui(t )  (2.1-17c) 2!

v(t;pattern i) -vi(t )  (21-17d) , ,

Note from (2.1-15) that

tan (t) = u(t)/v(t) (2.1-18)

for each pattern. ow

20 -
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For patterns 111 and 000, the signal is a pure sinusoid, so that U

(neglecting any filter delay) the quadrature components of the signal are

u(t;111) =-u(t;000) = a0 sin(rht/T) (2.1-19a)

and

v(t;111) : v(t;000) : a0 cos(,aht/T). (2.1-19b) C y

That is, for these two patterns, a(t) a0 and 0(t) ±ht/T, where
00

a0 : (2.1-19c)

For patterns 010 and 101, the original frequency modulation is a tfd

squarewave with period 2T, so that m(t) is a bipolar triangular wave with

amplitude irh/2 and period 2T. For pattern 010, the triangular wave's positive

peak occurs at t = 0, using the convention that d(t) = dk for (k-1)T <t U k.

Expanding sin -m(t) and cos em(t) in Fourier series gives

sinem(t;010) -sinem(t;101)

4h cos(lh) cosf(2k-l)rt/T] (2.1-20a) ':>"

and

cos (t;010) = cos (t;101)
m M .'

2 s(h 1 - 2h 2  s(2kfft/T)1 (2.1-20b)
m n- )I 2h 2 2o(2k)2 _h

-~~~ k=1 ~(l

Assuming that the I.F. filter passes only harmonics of these Fourier series

up to f = I/T, we find that

21
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u(t;0l0) = -u(t;1o1)

4h CoIrh H COS[Et B(-LT)] (2.1-21a)
2 0 2T 1-h2 T T

and

v(t;010)= vf t;101)

~sin(-') 14-2h2  0H(!IcsL- - B(-!)]J (2.1-21b)

where the phase delay B(f) is taken to be zero if a Gaussian-shaped filter is

assumed. Figure 2.1-2 illustrates the various waveforms associated with this

type of pattern.

For bit patterns 0110 and 1001, the original frequency modulation is a fd

squarewave with period 4T, so that 8 (t) is a bipolar triangular wave with

amplitude vh and period 4T. For pattern 0110, the triangular wave's positive

peak occurs at t = T. By analogy with (2.1-20), the Fourier series

expansions for sine mt) and cose m(t) are

sinem(t;1100) = -sinem(t;0011)

_8h o(h) cos[(2k-1)r(t-T)/2T] 2122) '-

k=l (2k'l) 2-nh2  "".

and cosem(t;1100) : cosem(t;0O11)

sin(nh) 1 2h2  cos[ k (t-T)/Ti (21-22b)1 -h 2hh (2.1'-22")

k=1

Assuming the filter rejects harmonics with f > lI/T, we find that the signal

quadrature components for these patterns are22

> 22
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u(t;1100) = -u(t;0O11)

cos(n h) 2 1 H 0 4T)1sin [7t/2TB(1/4T)]
1 -4h

1 2H 0(4- )l sin[3t/2T-B(3/4T)] (2.1-23a) :.-
9-4h .

and

v(t;1100) v(t;0011) 1

sin(7h) 1 + 2h---2 IHo( ) cos[rt/T-B(1/2T)]
7h 1-h2  2T

h2h 2 1 HO(!)cos[2-at/T-B(1/T)] (2.1-23b)
4-h 2  T

'Figure 2.1-3 illustrates the various waveforms associated with this type of pattern.

Recognizing that the time extensions of the patterns 0110 and 1001 are time

shifted versions of those for 1100 and 0011, we can immediately write

u(t;0110) = -u(t;1001)

=u( t+T; 1100 )  (2.1-24a) ..

and

v(t;0110) = v(t;1001) .,

= v(t+T;1100). (2.1-24b)

A summary of these components which determine 4(t) is given in Table

2.1-1, assuming no filter delay, with example values as listed in Table 2.1-2

for h 0.7 and D = WIFT 1.0.

24
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TABLE 2.1-2

EXAMPLE VALUES FOR SIGNAL PARAMETERS DESCRIBED IN TABLE 2.1-1 •

Case: h 0.7, D = WIFT = 1.0, Gaussian filter

Parameter Value :7
a0  0.82496

0S

a1  0.67523

a2  0.20788

a3  0.90649

a_ 0.41330
4

c1  0.79339 a1 = 0.53572
IS

c2  0.81033

c3 0.22625 a. = 0.047032

c4  1.0914 a3  0.98935

C5 -0.14883 a4 = -0.061511

c6  0.36788

c7  0.70691 a1 = 0.47732

c8  0.10271 a2 = 0.021352

.J .
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2.1.3 Limiter Output and Total Phase

A simplified receiver block diagram was given previously as Figure 2.1-1.

As shown in Figure 2.1-4 the digital FM demodulator consists of a limiter

followed by a discriminator and an integrate-and-dump filter, whose output

is sampled to yield the demodulated data sequence.

The purpose of the limiter, assumed to be an ideal bandpass limiter, is

to remove any amplitude modulation on the I.F. signal. Its output, y(t), is a

constant amplitude sinusoid with the same total phase (including modulation)

as the I.F. waveform:

y(t) = constant • cosK't + Phase [x(t)]9. (2.1-25)

The total phase :(t) of x(t) is found from the following development:

x(t) = [a(t)A cos(t) + nc (t)] cos(-ct+ _0)

- [a(t)A sin:(t) + n s(t) sin(-ct+ 0 ) -

= Env[x(t)] cos[- t + -0 + "(t) + rn(t)], (2.1-26a) "

-4'

where -(t) is a phase noise term, and

tan[:(t) + n(t)] -tan¢(t)

a(t)A sini(t) + ns(t) u(t) + n(t)

a(t)A cos:(t) + nc (t) v(t) + nc(t) (2.1-26b) .4_.

This development uses the Rician decomposition of the bandpass noise, Z..'4-

referenced to the carrier frequency and phase:

28 -
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n(t) = nc(t) cos(,ot+;O ) - ns(t) sin(wot+e0 ). (2.1-26c)

Recall that this noise may include jamming noise. At any instant, the

quadrature components nc (t) and ns(t) are independent zero-mean Gaussian

random variables with equal variancc; .

I NoWIF, hop not jammed
C2 = (2.1-27) . , ''

(N 0 +NojiQ)W IF' hop jammed. 2

Note that we can write the phase noise term as

vs(t)cos '(t) - v (t)sinT(t)
2o -tT+ v s(t)sinp(t) + v c(t)cosa(t) (

in which vs(t) and v(t) are .. -.
sc

V s (t) A n S(t)/, ,c~t W nc(t)/0, (2.1-28b)

unit-variance Gaussian random variables, and

D(t) a2(t)Az/2c 2  [u2(t)+v 2(t)]/2a2 (2.1-28c)

is the SNR (carrier-to-noise ratio) with time variation due to the I.F. : '

filter-induced amplitude modulation. A further simplification results from -
.

using a rotational transformation of noise variables to write
(t) tan i v/ (t) )  1() :

r(t) tan- -- ; (2.1-29a)
T2 7(J))+

we recognize that since
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G, 2 + 

") 

2
s C,

2 2= (vs coso - vc sinr) + (v s sln +v coso)

= V2 + V2  (2.1-29b) -

5 C'

the distribution of the rotated noise components v and v is identical to
C C

that of the actual components vc and vs. Thus at a given time instant, the

phase noise termnn(t) is independent of the signal phase and additive to it.

It is easily shown that the probability density function (pdf) for q(t) is

(see [4], chapter 9, e.g.)

( e ") e(x- 2/7'px cosc)/2 N
P a ) =e- P dxx e" X 2(2.1-30a)

- Psin -3

+ e" Cosa Q(-5  cosa)), a "10
27r"

p and therefore the total phase pdf is

= 4 p (a -)

e-0  + e sin 2(a cos(a-4) Q[- 2 cos( a-()] I-4<1 (2.1-30c)
(7.7 2 1T IT

In these expressions, Q(-) is defined as

Q aea2 12
if) -d e" /2 V..

e r f2 erc (x/11 . (2.1-30d)

13
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2.1.4 Discriminator and Baseband Outputs .

The discriminator output extracts 2v times the instantaneous frequency '-V

deviation from the carrier fo" This quantity is

z(t) = 27[f(t)-fo] = '(t) + n(t) = i(t). (2.1-31a)

The baseband filter, assumed to be of the integrate-and-dump type, operates on

z(t) to produce the differential phase at sample time t .

z,,( t S ) = dT z(T) = ,(t S ) - (ts-T) + n(t s ) - n(t s-T)

t -T

= A,(t) + Ar(t). (2.1-31b)

Although we have written the total differential phase A as the sum of a

signal differential phase term and a noise differential phase term, in general

the "differential phase noise" term An is not additive and independent of A¢, W'%,

but rather depends upon A;. Further discussion of phase noise, including

"FM clicks", is given in Sections 2.1.5 and 2.1.6.

Without noise, the differential phase output of the digital FM demodulator

is

A --tan-1 - tan , (2.1-32a)

where the principal values of the arctangents can be used if the trajectory

of (t) = tan -  [u/v] is such that IA¢I < -f. Otherwise, there is an inherent

2, -radian ambiguity in the arctangent. For the signal only, these requirements

are satisfied, and the resolution of arctangent ambiguities can be successfully

32
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accomplished by rewriting (2.1-31a), using the relation

I - 6 = tan- 1 { tan(o1-e 2 )}

-1 tane1 - tane 2  )
= tan

1 + tane~tane 2

and identifying e1 and 52 to be the first and second terms, respectively of

(2.1-32a), it is straightforward to find that

tan- 1 FU(ts)V(ts-T) - u(ts-T)v(t S) (2.1-32b)
U(ts)U(ts.T) + V(ts)V(tsT).(213b

A plot of ,(t) for the various data sequences, commonly called an "eye

pattern", is shown in Figure 2.1-5 for h = 0.7 and D = 1.0. Note the "closing" t

of the "eye" for the alternating bit sequences, due to the filtering in the

receiver, and the dependence of the L4 values at the bit times upon the

sequence.

The value of A(t) at t = 0 represents the sampled data value as recovered

by the demodulator. From Table 2.1-1 we can calculate the sample amplitudes

observed in Figure 2.1-5 in terms of the patterns and filter parameters. These

are summarized in Table 2.1-3. From the figure and table we observe the effect

that the I.F. filter has on the data output. Ideally, the differential phase

is +vh, as it is for the all-one's or all-zeros patterns. For the other patterns,

the phase distortion causes intersymbol interference, as the values of adjacent

bits affect-that of the current one, with the worst-case being alternating

one's and zeros. However, as Table 2.1-3 demonstrates, the average of the

time-varying SNR is higher for the alternating patterns, since the instantaneous

frequency for these patterns is, on the average, nearer to the filter center

frequency than is that for the non-alternating patterns.
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2. 110---
3. 101---

h = 2fdT = 0.7 4. 100- - --
D = WIF T = 1.0 5. 011---
Gaussian I.F. filter 6. 010--

7. 001-------
8. 000.......

M

=h 2.1991

2i -

rj ... .. -00 ....

-h =2.1991

'0.00 1.00 2.00 3.00 4.00 5.00 6.00
BIT time (t/T) ~':

FIGURE 2.1-5 DATA EYE PATTERNS (RUNNING VALUE OF INTEGRATE-AND-DUMP
FILTER OUTPUT) WITHOUT NOISE OR JAMMING

34a



S- c-l. - - - - -

(1))

t0 Ch to
CD .- -7 cJ

CIO ...U
I U U

'.0 + -

IL C \J UCCJS- I* Cl9uu

u -- 1iCiE 4 U

o:: 0 0n c 0C0

L- CL l) C~j U I

t- 4: 4D 41 ) u10 uu2= CDC 0 ON 00 + u

0 LI

in1 .-D Clr-.4 U

C)Di3 C-4 -J0
'.D~co

cL'J +1 +1 +1

< ) 4) I cc
+ -

ft..%0

4)) 0f 0

cel4 00 00

()o 0

-4 -4
aO ~ 0D C>

35



J. S. LEE ASSOCIATES, INC. I

2.1.5 Differential Dhase nistribution

As we have seen, the digital FM receiver output produces the differential

phase L4(t), where the difference is between the two values of the signal-plus-

bandpass noise total phase occurring at the sampling time and one bit period

earlier. The probability distribution of the differential phase t@ is found

by starting with the joint distribution of the additive noise components. Let

the noise quadrature components be given by

n c(t ) n_ nI  n c(t-T) n n3

ns(t) -n 2  ns(t-T) -=n4  (2.1-33a)

If the autocorrelation function for the bandpass noise is given by

Rn(:) =-[r(7) cos.eT -rT ) sinOT], (2.1-33b) "

then the column vector n = (nI , n2, n3, n4) is a zero-mean multivariate %

Gaussian random vector with covariance matrix

1 0 r

0 1 - r

= - r -. 1 0 - 2C, (2.1-33c) V

r 0 1

where

r - r ( T ) a n d , =_ (T ) .
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For a flat noise spectrum going into the receiver I.F. filter, the auto-

. correlation function Rn(T) is determined by the shape of the filter. For

example, if the filter frequency characteristic (passband) is symmetric about

the signal center frequency f0 then x('r) is identically zero. Using the

Gaussian-shaped filter introduced previously in equation (2.1-11), the noise

spectrum is

f~fo)/WIF 2 I
2 [ e T "(IF + e/ I (2.1-34a)

for which the autocorrelation function is

R N W e IF(2.1-34b)
Rn() NoWIF e cos-o', 

so that for this filter

-7D2
r e , = O,- = NnWIF (2.1-34c)

in (2.1-33b), using D = WIFT.

The multivariate probability density function for the noise vector n is

pn )  (4vdJet ) exp - z . (2.1-35a)

If we define the signal-plus-noise vector as x, with signal component 0 given

byW

Aal cos j

Aa1 sin j

,- = (2.1-35b)
Aa2 cosK2

• .A" si n ¢q ,.
.4'
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J.d

then the pdf for x is

Px() = Pn(a-); (2.1-35c)

for convenience we can normalize each noise component by 0 to get unit-variance -
T%_

random variables, with the normalized signal component vector (mean) then

expressible as

*21 cosz t

/2ci sin,-,,
X/= (2.1-35d) "

' -T sin¢ 2 _

with and c being the SNR at times t and t-T, respectively. The normalized

pdf then is

SC(47 ve ) exp -2 (.s)TC-cs) (2.1-36a)

_vI-- - 1-1 2

>exp 2 (ci2 -V'r71 sina-i)

l-  2 l v ( cos i)2  +2 ,,.

+2r( 1 -v2 1 osin )(ax3-vZ 2 cos 2) -.,. .,..,

-2r(,...1 si n ) (c4- v2- 2 sin¢ 2)

+( T: cos,' 2 + (c-v2T sin :)2  (2.1-36b)

38
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Since we are interested in the phases aL the sample times, it is

appropriate to change from rectangular to polar coordinates using the K.

transformation

R, cosli = R R 0

R, sin~i alT

(2.1-37a)
R2 cos = R2 0

R: sin*-- a42~l

If this transformation is employed, we obtain the joint pdf of envelopes and

phases given by

pEp(R:, R, : , K) = R1Rpx(RicosKi, R, sin¢K, R2 cOs¢2, R2 sin2)

R- R- I
exp - 2(Ri+R2)/2 + P1 + f24;:-(1 :) 1-v 2 L

-vRlRL cos(¢--12+) -XR! cos(K1-v)

-Y R2 cos('K-w)-2 i- cos(1- 2+ )]J (2.1-37b)

in which we use the notations

" = r = tan'1(X/r) (2.1-37c)

X 2c1+2;- 4P/vPQ-2 COS(Pi-'2+&) (2.1-37d)

tan v : [V7T sin¢1 -iv-/TP sin(¢.2-)]/[V7- 1 cos 1-,V"7 cos(Cz-I)' *

39
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L'

Y2 2 '. + 21'ji - 4vi VIi1 COS(t1-4'2+) (2.1-37f)

and

tan w = [v7-- sin 2-v2vp7 sin( 1+c)]/[vp 2 c -cos 2- Tcos(l+). (2.1-37g)

t w po +

As a check, we note that for p = 0 (no noise correlation), the pdf in .. z

(2.1-37) reduces to the product of the pdf's for each sample time: 4

PEP (RI1 , 9 : =O

= p(R. , ) p(R , 2 ) (2.1-38a) ',N

where each pdf is of the form

R R_p(R,:) 2- exp - -r + R,2- cos-4 (2.1-38b) " %

as discussed in connection with equation (2.1-30).

Having expressed the joint pdf for the envelopes and phases in (2.1-37),

the general procedure is to integrate over the envelope variables to give a

phase-only pdf,

P (: , €..) = dR dR2 PEp(RI, R2, 'i ,4'2 ), (2.1-39)

f'o

and then to find the pdf for the differential phase A4 = 4,1- P2. Various

approaches have been used for carrying out the integrations shown in (2.1-39).

Due to the complexity of the expression, the relative virtue of any particular.

approach lies in the feasibility of computing the phase pdf's obtained by the

approach. Here we will summarize some approaches that have been tried, and "-. :-

present the corresponding results.

4
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2.1.5.1 Fourier Series Approach

What we call the "Fourier Series approach" is one used by Middleton

[4, chapter 9]. The procedure is to utilize the Fourier series expansion

ea cosb = Z £k Ik(a) coskb, (2.1-40a)

k=O

in which

E: k = 1 (2.1-40b)

and Ik(.) is the modified Bessel function of the first kind, of order k.

Using this expansion on the cos(., -v) = cos(¢ 2+A-v) and cos(¢2-w) terms in the

exponent uf (2.1-37b), and integrating the resulting product of series over ¢z

(a 2 T interval) yields a single series:

XRi  YR-
d exP- cos(¢2 +L -v) + cos(P2-w)'

• ( 2 -)
i; . XR, (yR2

, 2T 1 k 'k -- R- cos k(12I-v+w). (2.1-41)
:, ~~k=Oi- i-2

Next in the procedure is to expand the R1R, term in the exponent to obtain

exp i-R: cos(L -)

I: -% - - c s ( -

[,RL 2m + £ 1 (2.1-42)
- .' I I '

;.  .... m' (m+£) cosQ(¢-r)
o=0 m=O

41
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in which a series expansion for the Bessel function has been used. At

this point, the integrations over R1 and Rz can be carried out. A synthesis

of formulas 6.643.2 and 9.220 in [5] provides the integration formula needed:

dR R 2 +  eR 1 k(3 R ) .

f dx xm+z/2 e- x Ik(2Svx) • 2m+ / 2

= .m + 1 + (k+Z)/21 ,k -m-l-(k+z)/2 m+z/2

F _[m+l+(k+ )/2; k+1; E /a], (2.1-43).,

where-(. ) is the gamma function and iFl(a;b;c) is the confluent hypergeometric.

function. After using this formula twice, the pdf for PA is a triple infinite

series of the Fourier type:

p._(x) = K(k, ,m) cosk( L-v+w) cos2(A¢- ), (2.1-44a)

k=0 z=O m=O
where the coefficients are given by

K(k,i,m) - exp - 2""

,,,.

m '. m+~_ _~k'. _ _ - [m+l+(k+ k)/2]
mk k!' "F

XY )k( 1 2 ) 2-k 2m+.

jF,[m+1+(k+;)/2; k+1; 2(2.1-44b) ,

42
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As a special case, note that for no correlation (P=0), the pdf reduces to the S

m=,=0 case of a single series:

-Pi-P2

,(x) e _ r2(1+k/2) (plp2)k/2 cos(A0- A)
2 =. (k!) ) o

xF1(l+k/2;k+l;Pl) 1 Fl(l+k/2;k+lP 2). (2.1-45) m

This special case has been obtained by Mizuno et al [6], and is recognizable as

the self-convolution of Middleton's series form [4] for the single phase pdf

12.1-30), often cited in the communications literature.

2.1.5.2 2v Modularity Issues

The procedure used in deriving the differential phase pdf (2.1-44) involved

a subtle but very significant assumption. In (2.1-41), integration over *2 was

assumed to be performed over a 2v interval. As presented, this integration

preceded integration over the envelope variables, but the order of integration

is not an issue. What is important is that this step is not strictly correct

unless the resulting differential phase is interpreted as a modulo 2v quantity. ,

To prove the preceding assertion, consider the following reasoning. First,

we note that the mathematical expression for the joint pdf p@(@I,€2) is

periodic, that is,

f( P+ 2n;T, ( 2 + 2mg) = f ((P (2), (2.1-46) i

where f is the expression. Next, we state that the joint pdf consists of

the mathematical expression plus the restriction of 4P and (2 to some principal
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,a ., p

interval (otherwise, the probability "mass" under the pdf would be infinite).

Since for no noise, : 1 and "2- 2, it is reasonable to state that

f (D1 ,42), Ia-I I<7r and I'2 - 2 1< 7

p¢(¢ , ) = (2.1-47)
0, otherwise.

Now, the formal procedure for obtaining the pdf of 64 = j- @2 consists

of performing the integral

p(y) = dx p,(x+y, x) , - < 27, (2.1-48a)

where the limits of integration are, by (2.1-47),

U = min[:;+T, ;+r - (L¢-L.)] (2.1-48b)

and

L = max[>-T, :L-T + (L- ¢)]. (2.1-48c)

This conventional procedure yields a pdf p,¢(') which is nonzero on a 47 interval.

For example, for noise only and no correlation, the "actual" differential phase n ,

pdf is triangular:
(2 - M¢I )/4T I : 27;i :

PL (y;A=-: 0) = (2.1-49)

0, otherwise.

But we can also speak of a "modulo 27," differential phase, defined as

= -. )mod 2t + uc (2.1-50a)

< T

2 2 < - < 4i (2.1-50b)

+27 , -4T < LA L < -2T.

44 ",
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The pdf for this modulo 27 differential phase is([7], [8]) the aliased "actual"

pdf:

Z pt (y+2kT .),. ,2~ (y) =  = (2.1-50c)

""0 , otherwise.

Again using the noise-only example, modulo 27 the pdf for the differential phase

is uniform:

p, (y;A=" =0 )  <  T. (2.1-51)

With these considerations in mind, we can show the relationship of the

modulo 2r differential phase pdf to the integral form of the "actual" L- pdf.

Using (2.1-50c) and (2.1-48), we find that

U_

p (y) dx f,(x+y-27,x)

+ dx f (x+y, x) + f dx f,(x+y+2T, x), (2.1-52a)

where

Uk = min[ -+., ;2+t -(y-A¢+2k7,)] (2.1-52b)

and

i . Lk = max[ -- r, C2-r + (-, -y-2k-)]. (2.1-52c) C
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For y(=-¢) < A¢ we have U_ < Li , so that the first integral in (2.1-52a) is

zero, and 
X."

U0 = ,2+t , L1 =2 - T (2.1-53a)

and

L0 = U 1 = 2-f + L4-A(. (2.1-53b) ,

Since f,(-) is periodic, we therefore have

dx f (x+y, x), Iy- i < , (2.1-54)

with the same result for y >Lz. -%

Our conclusion therefore is that integration over a 2v interval of ¢2 in

the derivation of the differential phase pdf produces a result that pertains not

to the actual differential phase observed at the digital FM demodulator output,

but to a modulo 27 version of it.

The question is, which version of the differential phase is appropriate

for analyzing digital FM performance? Not using 2T modularity greatly complicates "

the analysis and computation of the pdf (see [9] and [10], for example). However,

it is incorrect to say that the voltage at the output of the receiver is pro-

portional to a modulo 2r differential phase, because there is no mechanism in .. '. *.

the discriminator or in the integrate-and-dump filter which would induce this

modularity. For high SNR, the choice is somewhat arbitrary, since the unaliased .- 

'

pdf is negligible for HA-A[ > i. On this account, we shall use modulo 2r

expressions unless stated otherwise.

46
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2.1.5.3 Characteristic Function Approach

Using a modified characteristic function approach, Pawula, Rice, and

Roberts [8] have developed expressions for the modulo 2r differential phase

distributions. The pertinent results are the following:

1 ( dx e (r xEX-E(x)+2 U-W(rcosAP+xsin)4 -/ 2 [ (r cosy + [sin y) cosx] 2  2

(2.1-55a)

where 6

E(x) U-V sinx - W cos(,,¢--y)cos x
1-(r cosy + xsiny)cosx (2.1-55b)

and 0

U ( + 12 (2.1-55c)

V (, - cJ/2 (2.1-55d)

W = /u2 v2 = (2.1-55e)

F('--) - F( .) + 1, 'il< L < ;
Pr ;<'<' =

F(<) - F( I), I A> or < ': < (2.1-56a)

where

d/ eE(x) W sin(AL.-,) + r sin, - Xcos' (2.1-56b) .F() dx 4 1U-V sinx - W cos(A¢- )cosx 1 - (r cos + xsinw) cosx I
7;12 

."

A derivation of (2.1-55) is given in Appendix A which does not use the

characteristic function approach.
,1k. d'

.47,
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2.1.6 FM Noise Clicks

As the signal plus noise waveform is processed by the digital FM receiver,

the total phase derivative is extracted by the FM discriminator. We have seen

that this derivative can be expressed by the sum of signal (;) and

noise (n) terms. Recall that the phase noise is expressible as

V2(t) -

n(t) = tan- (2.1-57)
VI(t) +

Now, when 7(-t) (related to the instantaneous amplitude of the signal)

is small, the probability that the denominator in (2.1.57) can change

from a positive value to a negative value becomes significant. The impact

of this factor is illustrated in Figure 2.1-6. In part (a) of the figure, a'

,2 is relatively large, so that the example random phase trajectory is confined

to the right-hand side of the origin. Part (b) shows that, for the same sequence

of values of the noises v1(t) and v2 (t), when V2¢p is small, an encirclement of

the origin occurs.

A complete encirclement of the origin of course results in a rapid 27 increase

in r, or impulsive value of the derivative r(t) - heard as a "click" in FM re-

ceivers. Once the denominator of (2.1-57) becomes negative and also the numerator

changes sign, it is highly likely that a complete encirclement will follow.

Therefore, the expected number of encirclements can be computed as the average

number of zeros of v2 (t), given that v,,t) + 42 is negative.

Assuming that a click or encirclement always results when HIJ exceeds r,

we can estimate the probable number of clicks per unit time as follows. With

the help of Figure 2.1-7, we understand that a positive click will occur in the I

'48

""" a'- - *~ Ab ' '. p ' .a;a&.. ', 1 a'~~ . ~ \ % ~ -% . '( ~ %".%~



w* wx rI' - .rn rr w--.%Fw a- -,J- 1r

numerator

/T

a)~~~~ 0):rlaiey ag

n*

1*

ti to

.5t

a)S TSrla iey.ag

nuerto

-"'S

v2-t

b) ~2 relaivelysmal

FIGURE 2.1-6 EFFECT OF AMPLITUDE Oii LIKELIHOOD OF PHASE C
IN A~ v

ENCIRCLEMENT OF ORIGIN "SSp

49



() tnumerator

, .A,.-.

1. -- 0 v 2 denominator

2. > 0
3. ,+dt-"0-2

(a) Conditions for Positive Click

-WI

numerator

2 -. denominator

3. 0
3. .0

(b) Conditions for Negative Click

FIGURE 2.1-7 CONDITIONS FOR FM NOISE CLICKS

50 "4



J. S. LEE ASSOCIATES, INC.

interval (0, dt) if the phase noise angle n is in the second quadrant,

and if it is increasing fast enough to cross into the third quadrant during

the interval. In terms of the quantities in (2.1-57) and their derivatives, the

probability of a positive click in (0, dt) can be expressed as

P+ Pr'vl < -. 2, v 2 >O, V 2 + v 2dt < 0}
27 0dt .

V1 d If dv2 f dV2 p(v 1 ,v 2 ,v 2 ). (2.1-58)
A~ -o -c

Similarlya negative click will result when the phase noise goes from

the third to the second quadrant, with probability

P Pr- < L~; < 0, V- + v2 dt > 0}

fd: p(-'2v v , 2 , ). (2.1-59)
- - "-dt

In order to calculate these probabilities, it is necessary to develop the joint

pdf in (2.i-58) and (2.1-59).

2.1.6.1 Calculation of Click Rates

V, Recall that the total normalized waveform is

[ 2:(t) + v1(t)] cos[,'ot + ¢(t)]

..- - v'(t) sin[ -ot + ¢(t)] (2.1-60a)

V,2(t) cos[ -Ot + q(t)] I

+ c(t) cos u't- ,s(t) sinwot, (2.1-60b)

with (c,.s) being the conventional (normalized) bandpass noise components with

51
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(assuming a symmetrical passband) I

E{vc(t)Vc (t+T) } = E{vs(t)Vs (t+-) = r(T) (2.1-61a)

E{vc(t)Vs(t+T)} = - E{vs(t)vc(t+T)} = 0. (2.1-61b)

Then

\,(t) = ,c(t) cos,.(t) + vs(t) sine(t) (2.1-62a)

\2(t ) = -c(t) sin:(t) + vs(t) cos"(t), (2.1-62b)

and the noise correlation functions are

= r(.) sin[c(t)-¢ (t+))]. (2.1-63a)

E r(T) cos[:(t)-:(t+T)]

= E1\2 (t)\ 2 (t+:)). (2.1-63b)

From these expressions we can deduce that the nonzero moments are

c : E(.2(t) = 1 : E &t)} (2.1-64a)

-- ( t} -(t) (2.1-64b) ' %

E;- = + (2.1-64c)

Since ', Y: and are Gaussian random variables, their joint pdf is

then
1 "/2p

pl'i , v ) -- e P2 (;±',2), (2.1-65a)

_ I

5.ie
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where

- -P2V 2exp 1 - 2, (-) + (; 2 )2  (2.1-65b)
2rU 2/1-2 2(1_C2 2 az II

With this joint pdf we can now calculate the click probabilities P+ and P-.

First we note that

d,V 2  ) = -Q(-2dt) 1,¢2 (2.1-66a)

= erf P2 (v\,;2) (2.1-66b)

and

d P . ) - -l( Q(x2dt)1 p(VI,2 (2.1-66c)-dtI

2 erf ( ,dt\2 (2.1-66d)

,- Anticipating that we will make the value of dt very small, a suitable approxi-

mation is the first order MacLaurin series

x2/2 (2.1-67)

Substitution of this approximation in (2.1-66) and then in (2.1-58) and

(2.i-59) gives

"' "-' -( '2dt )2/12

+: d- d>-(-edt) e p2(vl,V2) (2.1-68a)

and

,-(2dt)
2/2

P J d d- ('dt) p2 ( ,. "  (2.1-6bb)

-a-%..--,'2 T-
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The net positive click rate then can be written as

PP-Nc  k m Id--t (2.1-69a)

dt -O

- " dvf d' 2 P 2 (v 2) 1
vi v

or

Nc = e - - * e (2.1-69b)

From this expression we observe that the tendency is for clicks to oppose

the direction of rotation (phase) of the signal. Averaging over the T-second

data bit interval results in the following expected number of positive clicks:

Jts
Nc -I dt s(t)e " (t) (2.1-70)

-T

2.1.6.2 Effect of Clicks on the Phase Distribution

The differential phase L at the output of the digital FM receiver was
I

shown earlier to have the probability density function pL (x). Now we must

say that this previous result pertains to the case of no clicks, or to the

portion of the differential phase excluding clicks. If a discrete distribution

for the number of clicks in (t -T, t ) is postulated, then the pdf for the r

differential phase including clicks can be written as

Pd(x) -Pd(x;:) = Pr{N = n} p LD [x + 2rn sgn(Lf)]. (2.1-71)

n=0

In this expression we use the fact that the sign of L4 is the same as the sign

of (t) in the bit interval, and assume that only clicks opposite in sign to .A

54
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are significant. In (2.1-71) also, N, the net number of opposing clicks,

is assumed to have the Poisson distribution:

Pr{N = n) = exp{-I~J} • Nc"/n . (2.1-72)

Figure 2.1-8 illustrates the effect of opposing clicks on the differential

,.

W phase probability distribution.
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2.2 ERROR PROBABILITY FORMULATION

In this subsection, we discuss the bit decision procedures assumed to be

implemented by the FH/CPFSK receiver, and derive the basic expressions needed

to evaluate uncoded bit error p1-obability (BER) in consideration of thermal noise,

-! clicks, jamming noise, and intersymbol interference.

2.2.1 Decision Processing

In Section 2.1 we have discussed how the limiter-discriminator receiver

with integrate-and-dump filtering develops samples of the differential phase.

We denote those samples by- '_ ,i=1,2,.,LI, where L is number of hops on which

the data is repeated for possible diversity improvement against the jamming.

If L>I, the T-second period over which each sample is developed is related to

the bit period by T = Tb/L. In concept, we can diagram the decision processing

to be evaluated in this report as shown in Figure 2.2-1(a): the samples are

first processed by a pre-combining function g(') to produce modified samples

K zi , where

z = g(" . (2.2-1)
1P1

e %.P For example, g(.) may represent analog-to-digital conversion with a specific

number of quantization levels; if the number of levels is just two, then the

function g(. ) implements the "hard decision" given by

I ~.I

iHD 
(2.2-2)" ' i - z ¢< 0.
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FIGURE 2.2-1 RECEIVER DECISION PROCESSING
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The modified samples are then summed to produce a single decision statistic

z, that is,

L L
z Z= (2.2-3)

i =1 i =1

so that the final bit decision d is made by examining the sign of z:

1, zd =  (2.2-4)

'A In practice, since the data rate is assumed to be higher than the

hopping rate, the L "chips" constituting the repetitions of each "data

bit" are not transmitted one after another, as implied by Figure 2.2-1(a).

Instead, they are transmitted as members of sequences of Q chips per

hop, and the sequences are repeated over L different hops with the idea that

P. some of the hops will evade the jamming. Thus, some prearranged formatting

is necessary so that the receiver can retrieve the L "pieces" of a given bit.

* .'Y Figure 2.2-1(b) illustrates the processing necessary to collect a particular

data bit's L "pieces" from among the set of LQ modified samples which are K
received over the L hops. For our analyses, it is not necessary to describe

the receiver decision processing any further, except to note that scrambling

or re-ordering of the Q-bit sequence from hop to hop is an option; if such a

re-ordering is done, then the intersymbol interference differs from hop to hop, .

5,

' .', *5"

oO-
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and this affects the analysis, as we shall mention below at the appropriate

place.

2.2.2 Conditional Error Probabilities

Each of a data bit's L differential phase samples .i is a random variable

whose distribution is parametric in the values of the following quantities

during the sample interval: the CNR PMi representing the thermal noise and

the presence or absence of jamming; and the nominal differential phase L1i and

the CNR-related parameters Ui , Vi , and Wi , representing the data pattern-

dependent intersymbol interference effects. Thus the distribution of the

modified sample zi is conditioned on these quantities as well:

Pz (ip ( ,:(,-M UiViWiL i),
P i  ' ' i Pzi  (2.2-5)

where the vector is a shorthand notation for the set of data-dependent

parameters listed. p.

The symmetries of the data-dependent parameters are such that

Pr(-'2 i < 0': i , x1y} = Pr{A¢ i > 0 !Qi), x Oy 1, (2.2-6)

where "xly" stands for a data pattern with a data value of 1 at the sample

time, and "xOy"is the complementary pattern. If the pre-combining processing

function g(.) is perfectly symmetric (odd), then it is also true that

Pr(z i < Oxly} = Pr{z i > OixOy }, (2.2-7)

and for L=1 we may restrict our attention to the xly patterns in calculating

the BER.
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For L>1, the randomness of the {zi) is due to noise power at different1 S

portions of the RF spectrum, so they are statistically independent, with their

*joint pdf given by

L

The parameter sets {0 , 8 are in general different for each hop, with the

L values of c() independent of each other since it is assumed that the event

of jamming on one hop is independent of the event of jamming on another hop.

The data dependent parameter values, however, are related, since the data

sample values are the same. There are two cases we shall consider: (1) the

transmitted data sequences on the L hops are identical, and (2) the transmitted

data sequences are scrambled. For case (1), the data-dependent parameters are

identical ( i = ., all i). For case (2), the individual i are independently

selected from those corresponding to the four possible data patterns represented

by xly, or xOy.

In consideration of the symmetries we have discussed with respect to the
% .' -.

distribution of individual hop samples, It is possible to state the symmetry %

which applies to the conditional probability of error as follows. The

distribution of the sum decision statistic is such that when x =0

(2)

Pr{z < (1),
-i 2 . (2.2-9) '%

where denotes the data-dependent parameter values arising from the comple- t.-'

ment of the pattern which produces '" Therefore, the conditional probabilities
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of error have the symmetric relationship

p ~ l (1) (L) )..
P(ejo , x11y1 ;.. .;P ,XLlYL)

p~l(1)--)
P:eI, ,X10y;... ;p ,XLOyL), (2.2-10)

when x = 0, which holds for a noise spectrum symmetric about the carrier frequency.

2.2.3 Unconditional Error Probability

The unconditional error probability is found by averaging the conditional

error probability with respect to the jamming events and the intersymbol inter-

ference patterns. The required pdf's for averaging are assumed to be discrete-

valued.

The averaging over the jamming events is most easily done at the per-hop

level. That is, in the calculation of the error, we use the hop pdf's

PzPr{(i) = R}pzi~ (i), i ) (2.2-11a) *

= (1-y)p N -i + YPz((CLpTI P) (2.2-1ib) _

where the unjammed SNR PN and the jammed SNR PT are related to the signal

bit energy and noise spectral densities by

I Eb (2.2-12a)

N L N0 0a ,

0 1 Eb ~ . Ebb. .b (2 .2 -12b ) ' .
T L N0+N0  L N0+Nj/ ( /
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In (2.2-12b), it is assumed that the actual jamming spectral density N j is

related to the average jamming spectral density NJ by N 0  = NJ/y. This is

turn assumes that the fraction -Y of the hopping band is jammed with noise

density N 0 ; the fraction '" also is the probability of jamming, as used in

(2.2- 1i b).

Assuming that the partially-averaged pdf's given in (2.2-11) are used,

the conditional probabilities of concern are of the form

P(eJxlYl,... ,XlYL). (2.2-13) K

The complementary patterns need not be considered in view of the symmetries

discussed above, assuming that l's and O's are equiprobable. Therefore,

the general BER is the average

S )L

P(e) P(exllY,... ,xY) (2.2-14) ,
x 'Y,.

-A

if the data sequences are scrambled from hop to hop. If identical data -

sequences are used, then xi = x and yi = y, and

P(e) = 1(P(ejlO) + P(e011) + P(eI110) + P(e1111)}. (2.2-15)

As a practical matter, if the sequences are scrambled, it is more

convenient to use the marginal (averaged) sample pdf's

Pz( ' v "Pz [a!_(o 1o)] + Pzj [a _ (o11)]

Pz.[ 1 (110)] + Pz.[ ]L(111)]p (2.2-16) i

1 1

and to straightforwardly calculate

P(e) = Pr{Zz i < 0l1} (.-)," . • (2.2-17 ) :
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2.2.4 Treatment of Clicks

The single-hop pdf given by (2.2-11) may be expanded in terms of the

number of FM noise clicks, as follows:

Z z z T9

(1-i) Pr{Nc=njo,) f(a +2-n;P)n=O

+ Z PrNc=nIcT,V f f(a+ 2vn;oT, f), (2.2-18)

n=O

with N the number of clicks. For convenience we consider only patterns with
c

> so that the probable clicks of significance are negative, those which

have the effect of shifting the differential phase pdf to the left by some

multiple of 2T. In (2.2-18) we indicate an infinite sum with respect to the 3 1-

number of clicks in the interval T; this can be interpreted as averaging the '

pdf f(+2 -N;. ,.) with respect to N. We also, in using r (without a subscript),

suppose that no scrambling of the data is done from hop to hop; then (2.2-18) is

the pdf for each of the L sampled differential phases, conditioned on the data

pattern.

2.2.4.1 Number of Significant Clicks

It is possible to write (2.2-18) as

Pz (2.2) = 9f

n01 n=O"" 
'

emphasizing the fact that this pdf is the superposition of 2r translations of

pdf's for given numbers of clicks. We then can appreciate that the sum z also

--

.
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has a pdf which is of this form, that is, is a superposition of (overlapping)

pdf's for given numbers of clicks. When we consider that each of these

constituent pdf's is nonzero for only a finite portion of the i-axis, then it

follows that a certain, finite number are nonzero for positive z. This fact

rneP
allows us to restrict our attention to a finite number of clicks when computing

the probability of error.

The reasoning is as follows: the sum's pdf may be expressed

by

cci

PZ(> ) : f(L) (a+2rn; ) (2-0,' z n-O"

nZ g [c-L'+2n ;f], (2.2-20)
n=0

in which the g n(:) are pdf's centered at = 0, so that the constituent pdf's 7
f (.) are seen to be centered at LL;-2 n.

If the single-hop pdf's are nonzero for a 27 interval, then it follows

that the gn are nonzero for 27L intervals as a result of convolution of L

pdf's. Now, the error probability can be computed from

P(e) = Priz<O}

= 1 - Pr{z>O}. (2.2-21) :'

Therefore, in computing P(e) we need only those constituent pdf's which are

iurILro ur -0 , corresponding to click numbers n = 0 to n = max, where
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nmax is deduced from

LA - 21Tnmax + L < 0
orna L (+). (2.2-22a)orL p

nmax > 27T (L q+ IT. 222a

For example if A = v/2, then nmax is the smallest integer larger than 3L/4.

It is further deduced that

nmax L [ (1+~)

I /T > L-2' L
< L-2 (2.2-22b) ,

L-2, #/v < L-2

for 0 < 4 < 7.

Figure 2.2-2 illustrates for L z .67T the facts that for L=1, the P(e)

can be computed using just the pdf for no clicks; for L=2, using the sum pdf's

for zero and one click; and for L=3, using zero, one, and two clicks. i

Knowing this basic rule on the number of clicks that are significant

for computing the error saves much computation, and also permits simplification

of the analysis somewhat.

2.2.4.2 Application to Sum Characteristic Function

With the preceding in mind we can truncate the click-indexed series

(2.2-19) and write the single-hop pdf as

nmax (1)

.(a) = Z fn (d+2un;), (2.2-23) ' :*1z n n "
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, .

with characteristic function
nmax j 7n

() na n (v)ej 2 nV '  (2.2-24a)

n=O

where i
¢n.VI f B_) .(2.2-24b)

Then, since the samples are identically distributed (given g), the characteristic

function for the sum of L samples is

CL)(. = [ ( ) ]

(())

4P

nmax-j2n 
L

L nmax zk -j27,k
T k ) e (2.2-25) "£o, 1.,.,nmax k= k ,

: n= L

The first several terms of (2.2-25) are

) + L -1 4P e-J2

sp2/ 0 (P2 ]e-4 (2.2-26)

-4a

I
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3.0 BER CALCULATIONS FOR DIVERSITY SUM

In this section, we develop theoretical expressions and numerical results

for the BER produced by the limiter-discriminator FH/CPFSK receiver using

straightforward linear combini ig of the L diversity samples of the differential

phase. Worst-case partial-band noise jamming (WCPBNJ) is assumed, and our 4.

interest is to determine the improvement in the BER, if any, that is achieved

by processing the diversity samples in this manner.

3.1 L = 1 BER IN WORST-CASE PARTIAL-BAND NOISE JAMMING

The baseline case for measuring improvement in pcrformance is the case

of no diversity, that is, L = 1. The BER for this case is

WINN
r <0 1~ y (3.1-1)

where as before "xly" denotes the different data patterns which determine the

intersymbol interference parameters, and the effects of jamming and noise

clicks are already included. The pdf, conditioned on the pattern, is given by

pz ( ) = (1-) Po,n f(a+2T-n;cN') + Z Pl,n f(b+2 7n;:T'- ) (3.1-2a)

n n
: . T = f 1) (,+27n;") 1) (3.1-2b) ''

n0

n

in the notation of Section 2.2.4, with the click probabilities pon (unjammed)

and (jammed) given by
1ln
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Pi Pi n P Pr {Nc  n (3i ,1-))
Z4,

The conditional BER is conveniently expressed as

P(e!xly) = 1 - Priz > 0Ixl ""-

= 1 -f da pz(a. )

1 ' _I (3.1-4) * -=I-J d r i(;). , # l

0

Note that only the term of the pdf corresponding to zero clicks is needed..---

Expanding further yields

00
P(e xly) =1 -(1--, )p0,0  d- _(,rN

P P1,0 f f( VCT-)

%

(1-,) PO,O P1,0 '.

(l-)po,0 [F(.+ ;CN, )_ F(O; Nf_)] ?

9..,Z

" Pl, 0 [F(: +r.;oT, )_  - F(O;fT, )] ,  (3.1-5) ..
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where the function F(-) is given in (2.1-5b), with X=0.

3.1.1 Case of No Jamming

With no jamming, the BER is (3.1-5) with the substitution of y= 0,

OP resulting in

P(elxly) = 1 - Poo- +(~t p0,0 F((3.1-6)

P0,0 N

Averaging over the data patterns (with parameters denoted by ~)gives

P(e) -'P : 010) + P(e~i011) + P(e' 110) + P(el111)}. (3.1-7)

3.1.1.1 Pattern-dependent Quantities0

To illustrate the use of the various parameters developed in Section

2.1, we list in full the pattern-dependent quantities:

010 pattern

=e (3.1-a

where

ro-

N c= J dt -(~vt 2~~t exp {-c[u (t + v 2(t) (3.1-8b)
-T JU2 (t) + v 2tM

and u(t) c C OS(7t/T) (3.-8c)

V(t) =c 2 - c3 cos(27t/T). (3.1-8d)
2 3

For computation it is convenient to define the following functions:
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u(t) u(Tt), v(t) = v(Tt) (3.1-9a)

W(t) = Tu(Tt) , z(t) Tv(Tt). (3.1-9b),

With these functions, (3.1-8b) becomes
0#

d (x ) - uix)z(x) )2 -x2
Nc = x - dx 2 (-x2 exp{-1[(ux) + (3.-]} . 10)

(u,(x)) + (v(x)

The functions u, v, w, and z for the several patterns are given in Table

3.1-1. -' _

Now, the parameter set _ includes the nominal differential phase -,

and the CNR-related parameters U, V, and W defined in Table 2.1-i. For the

010 pattern, these are

(010) = 2 tan -I  = 1.2239 radians
(2 2 3 )2

U(010) = [c2 + (c2-c 2] =0.8696L

V(010) 0

W(010) = U(010).

The numerical values assume that h = 0.7, WFT 1.0, and a Gaussiar ihaped

, I.F. filter.
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To calculate P(eI010), P0 ,0 is computed by numerical integration using .

(3.1-8a) and (3.1-10); the 6 parameters are calculated using (3.1-11) and

Table 2.1-1, and substituted into numerical integrations of (2.1-56).

011 Pattern

For this pattern (3.1-8a) and (3.1-8b) apply, with u(t) and v(t) given

by

u(t) = c4 sin(7t/2T) - c5 sin(3Tt/T) (3.1-12a) Z

v(t) = c6 + c7 cos(7t/T) - c8 cos(2Tt/T). (3.1-12b) ,

The transformed versions ef these functions and their derivatives, shown in

Table 3.1-1, are used in (3.1-10) to compute the click number average N C

The parameters needed for computing F(.) are, from Table 2.1-3,

1 [ c4+c5

-(0l1) =tan 1.7108 radians

2 2 2U(011) = [(c4 +c5 ) /2 + c7 + (c6-c8 )2] = 0.77844

V(011) = [2c 7(c6-c8 ) - (c4+c5 )2/2] = -0.0997 (3.1-13)

W(011) U (011) - (011) : 0.7719,.
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110 Pattern

The functions u(t) and v(t) for this pattern are

u(t) = c4 cos(7t/2T) + c5 cos(3rt/2T) (3.1-14a)

and

v(t) =c 6  c7 cos(rt/T) - c8 cos(2,t/T), (3.1-14b)

with the transformed versions shown in Table 3.1-1. We note that since,

for example,

u(t;110) = u(t+T;011) = u(-t-T;011) (3.1-15a)

* v(t;11O) = v(t+T;011) = v(-t-T;011), (3.1-15b)

there is a great deal of symmetry with the pattern 011. In fact, using

(3.1-15) we see that

R = (110 1 dt 7-T;1)e- a(-t-T;011)

Nc( I 0) 2 dt -(tT; -(tT )

*'..., -1 T,%(- h

dt :(t-T;011)e - 11)

_ dt (t011)e 2 t11) Nc(011). (3.1-16)

-T

We also note from Table 2.1-3 that " U, and W are the same for pattern

110 as for pattern 011. The sign of V changes, but this is of no significance

, -. 7B
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when one examines equation (2.1-56) under a change of the variable of

integration from x to -x. Therefore, we can conclude that

P(eIl0) = P(eO11), (3.1-17) '

and avoid the necessity for computing P(e 110) separately. *'.,

111 Pattern

This "all l's" pattern has the simple result that

a2
h - a 0N - e (3.1-18)

since u(t) = a0 sin(rht/T) and v(t) = a0 cos(rht/T). The pattern
0 0

parameters for calculating F(.) are e
,.-.

2
U(111) = W(111) : a : 0.6806:

V(111) = 0 (3.1-19) .

-.:(II) = h= 2.1991 radians.

In view of the symmetries we have noted, the P(e) expression (3.1-7) can

be modified to

1+P(e) = P(e'010) + 2P(e 011) + P(eI111)-. (3.1-20) C
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3.1.1.2 Numerical Results for No Jamming

The average BER (3.1-20) is computed using the program given in Appendix

B, with the results as shown in Figures 3.1-1 to 3.1-3.

In Figure 3.1-1, the time-bandwidth product D = W1FT is fixed at the

value of D = 1, while the digital FM modulation index, h, is varied. TheA. - *,

well-known property that h = 0.7 is the best value for the additive Gaussian

channel with high SNR is illustrated by the figure. Crossovers in the figure

reveal that this accepted value of h is best for SNR's greater than 4-5 dB;

for lower SNR, h = 0.8 is the best value among the values of this parameter

which are plotted.

In Figure 3.1-2, the modulation index is held fixed at the value h = 0.7,

while D is varied. Plotted against SNR, as in this figure, the BER decreases

uniformly as the filter bandwidth increases (D increases). However, this is a

misleading portrayal of the dependence of the BER on D, since the SNR is

given by

SNR S - (3.1-21)

NR=-- NoWIFT N D

in order for SNR to remain constant while D varies, the bit-energy-to-noise

.. density ratio must vary. A more fair, equal-bit-energy comparison is presented

in Figure 3.1-3, in which the BER is plotted against Eb/NO. This second

" comparison is more in accord with intuition, for we observe a tradeoff between
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the beneficial effects of increasing D (more signal energy recovered) and

the degrading effects (more noise power admitted), with D = 1.0 being optimum
A.W'

for high Eb/NO$ D = 0.9 best for 8 < Eb/No< 12 dB, and D = 0.8 best for

Eb/No < 8 dB, among the values of D used in the figure.

3.1.2 Case of Partial-Band Jamming

The computations for no jamming are parametric in the SNR, yielding

P(e) = Pe; N). (3.1-22)

Inclusion of partial-band jamming is performed by calculating the expression

P(e) = (I->) P(e;cN) +> P(e;2T), (3.1-23) r.

where

T + (3.1-24)

is the effective SNR when the signal is jammed, and is the fraction of the

hopping band which is jammed.

Figure 3.1-4 shows plots of the jammed BER (3.1-23) as a function of

Eb/NJ = .j and parametric in-,, for Eb/N 0 fixed at 11.75 dB. This value of

-5Eb/NO gives a 10 BER without jamming, as can be observed in the figure as

Eb/N J becomes large. For each value of Y, the BER curve is "S-shaped," with

a left (low Eb/N J or strong jamming) asymptote close to the value of P(e) = 12,
b 'p

r• and with a right asymptote (high Eb/NO or weak jamming) of P(e) 10

N
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The centers of the "S-curves" are different for each value of Y, so that

when they are superimposed as in the figure, it is evident that a particular

value of ) produces the worst-case or highest BER value only for a small

range of Eb/NJ. For example, the value Y = 0.01 is the worst-case, among the

values displayed, for 21 dB < Eb/NJ < 24 dB, approximately.

Note how much greater the error is with worst-case jamming than with

full-band jamming (Y = 1). For example, 10-4 is achieved when Y = 1 for

Eb/NJ = 17 dB; when - is the worst-case value, a 10-4 BER requires Eb/N d =

34 dB, or 17 dB more signal power.

If we were to superimpose additional curves for more closely-spaced

values, it is easy to predict that the appearance of Figure 3.1-4 would become

essentially that of a black solid, with its upper "edge" a plot of the worst-case

BER for Eb/NJ continuously varied, or

P =max P(e;Eb/N (3.1-25)

,Figure 3.1-4 suggests that the slope of that worst-case BER curve would be -1,

that is,

" 0.21 2 dB Eb/NJ < 35 dB (3.1-26)PWC Eb/N~J b

for much of the range of Eb/NJ with the slope eventually increasing to zero as

Eb/NJ increases beyond 35 dB or so, since the BER cannot be less than the
\m.

unjammed value of 10- .
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;.J

If Eb/N0 is increased to 15 dB, giving an unjammed BER << 1o-7 (see ,,, ,.v.

Figure 3.1-1), essentially the jammed BER is given by

P(e) -Y P(e;cT), (3.1-27)

and the superimposed fixed-h curves are as shown in Figure 3.1-5. They are

still "S-curves" as in Figure 3.1-4, but -.he high Eb/NJ asymptote is much lower,

and the low Eb/NJ asymptotes are somewhat lower. Now we see that the worst- ,

case BER is characterized by a -1 slope throughout the range of Eb/NJ shown, so N

that

WC Eb/N b/NJ 2dB b.

with the worst-case value of , being very closely predicted by

EN , /N- 1.58 ,2 d8

(3.1-28b -

1, Eb/NJ 1.58 = 2 dB.

3.1.3 Simplified Calculations for L = 1

It shall be interesting to compare the exact BER results for L 1,

presented above, with calculations based on simplifying assumptions. The

expressions (2.1-55) and (2.1-56) for the differential phase distribution's

pdf and probability function simplify considerably for the following

assumptions:

84.
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L: =/2 (representative or typical value)

r = = 0 (neglecting correlations) ".

(neglecting intersymbol interference

U = W = a2  asymmetries). ,.-;

In effect we are replacing the distribution, averaged over the pattern- _

dependent quantities, with a distribution with "typical" values. In that

the V = 0 assumption relates to the "all one's" pattern, it is reasonable

to interpret -1 = 7/2 as arising from a modulation index value of h = 0.5, .-. ,.

so that a2 = 0.81 - exp '-7/169 is appropriate. However, the analysis

approach used here is not so formal as to prevent an arbitrary choice of some

value for a2 , if it turns out to model the exact results well. '

The jammed BER for the simplifying assumptions becomes 'is

P(e) = (1-) Ce0 + -e + - ecc + 0 -e (3.1-30a)

where -a2

c e =P(eno clicks, i), (3.1-30b) -7.

and

(-N i = 0 (unjammed) S

= (3.1-30c) .'.' ,.
i = 1 (jammed).

- :,

..
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-ci
By coincidence, the probability of zero clicks turns out to be e as

shown; that is, if the phase modulation is assumed to be such that " = 7h/T =

r/2T.

For no jamming (- = 0), the simplified BER expression using a2 = 0.81

gives the following values: .

N BER

10 dB 1.5176 (-4)

11.25733 dB 1.0000 (-5)

15 dB 1.8781 (-12).

Calculation of the worst-case partial-band jamming BER produces the following

asymptotic results (higher Eb/N):

N P WC WC

11.25733 dB 0.23/(Eb/NJ) 1.7/(Eb/NJ) (3.1-31a)

15 dB 0.22/(Eb/NJ) 1.4/(Eb/Nj). (3.1-31b)

-, Note that this approximation gives a higher jammed error than the exact

expression [see (3.1-28)], and a lower unjammed error. Thus, "tinkering"

with the vlaue of a2 (to scale the SNR) will not accomplish agreement between

approximate and exact answers for both unjammed and jammed conditions.
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C,.

Another approximation approach is to fit a simplified curve to the

exact unjammed P(e) shown in, for example, Figure 3.1-1. For h = 0.7 and

D = 1.0, we have the approximation

P(e) z 0.394 e- 0 717 c , (3.1-32)

which is fitted precisely at 0 = 0 dB and 10 dB; it gives a 10-5 BER for

11.7 dB. When this form is used in the jammed BER equation, for high Eb/N 0

(negligible thermal noise), the worst-case BER obtained is
;:

.20WC E b/J  ,(3.1-33a)

with
1.39

WC Eb/N (3.1-33b)

These results compare well with the exact case given in (3.1-28).

N?

X2.
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3.2 BER COMPUTATIONS FOR L = 2

The calculations of the BER for L 1 showed that worst-case partial-band

jamming severely degrades the FH/CPFSK performance. We now begin to determine

whether linear diversity combining will produce an improvement.

3.2.1 Derivation of BER Expressions A

The two differential phase samples from two hops for a particular bit are

statistically independent, due to the separation in time and frequency of the

noises added to the signal on the two hops. Therefore, the joint pdf for the

two samples is, for a particular data pattern, "S
(1) ( ).%

(xPZ I 2P 21 (xI_ ) p(1 ( l (3.2-1)

using the notation of (3.1-2). .

Restricting our attention to patterns with a bit value of 1, the

conditional probability of error is given by

P(e E) = Pr-,zI+z 2 < Oi}, (3.2-2)

and the probability of error is represented by the area noted in Figure 3.2-1. •

Since the joint pdf (3.2-1) is symmetric about the line zI  z2, the conditional

BER, with the help of the figure, is seen to be

DR.,-
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P(e'i) r d - di y p 1 (XIL) pM1(y -), (3.2-3a)
J_
T, c -x

or

1 P(ej') 2j dxf7L dy PM' (xt. pM1 (YI~ 0'

+ xdy p (xjB) p Y(3.2-3b)
max(-x,-4)-r)

2 P + p (3.2-3c)
1 2'.

Recall that

p (f (x) -n-

n=O 0

=(1-) ~j 0,n p (x+27n; CN,
n= 0

+ j p(x+27 TnCE (3.2-4)
+~~~. P y P T.)

where the modulo 27 pdf p,(x) is nonzero for Ix-LAl < ir, and is given by

(2.1-55). For notational convenience, let

p~x~c '9 (x), ~ N(unjammed)(.25

q,(= )T (jammed) ON
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With this notation, we have

cdx' dy (1--i)p 0 1 qo(x+2T) +p, 3 ql(x+2T)]

[(i p')0 q0(y) + y p, 0 q, (y)]

-f dx / d4(-) 2 p, p0,1 qo(x) q0(y)

-~- (1~)p 1,0 p0 , qo(x) q1(y)

+ -1 2 PlP10ql(x) ql(y)]j

= (1Y 0,0O', P1(0,0) + )11--Y) P0,0 P1 1 PJ(i,0)

+ I1- ' 0 p01l P1(0,1) + YP'-p1 1, 1 11). (3-6

From (2.1-56), we recall that

/dy qiy = Fi(B) - Fi(A) + .1 [sgn (B-Aq) - sgn(A-LA,)], (3.2.7a)

A'

JF(4, = o. (unjammed) (.-b

Fl(:), T(jammed),

92



J. S. LEE ASSOCIATES, INC.

and realizing that

Fi(x _2kr) = Fi(x). (3.2-7c)

Substituting the defined functions results in

Pl(i,j,) F.(: -Fr) [F(¢+7) - Fi( r-)]

+447

-r dx qi(x) Fj(-x)

+ u( 2F:--/2)[Fj(+ i + - Fi(27-)], (3.2-8)

in which the last term is zero for < 1T/2.

The term P may be written

= . , I,

p 
2

P2 [(I- )Po~o + 'Pl,0 ] Y3

-J dx f dy [( -Y) p0 0, q0 (x) + P1 ,0  ql
(x )]

[(1-1)p 0 , 0 q0 (y) + fPl, 0 ql(Y ) ]

2. 2 2

[(I-y')Po,o + P1,]
2  -(I-) 2P 0 P2(0,0) .

(l-)PooPlo[P2(O,1) + P2(I,0)] -yp 1,P2 (1,1) (3.2-9)

% ~~93 "-_-
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The probabilities P2(' j) are found to be

dx qi(x)F (-x) .

ThetoalP~e tenca beL~4~ exressed as

1 11

+e (1'r/ - )F.(i) - ~ F.(A eIr - jj( E r) (3.2-11)

where te*attr szr o

P~e ~ + Pil PjI P (l~ 2i0)QjPl ij (3.2-ha) ',

wher copttoi-ssmwa oeefcett s h olwn

Ne+pLi )o (j, 1-Y -(~ ) ijP (3.2-12a)'P
+ ~ .>:C3

i=0 jA-

Fo cmptaio, t s omwht oe ffcinttous te olown

forPlaion
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where

Pa(i,j,.) = I - Pi PO PI, PjO P1(i
'j 1--) " Pi,oPj,1PI j 'i 10

+ Pi O P 2(ijlt). (3.2-12b) .-

~S

3.2.2 BER Results for L = 2

The L = 2 bit error probability for FH/CPFSK in partial-band noise 'V'

jamming was calculated as the average over bit patterns:

10P(e) = 1 [P(e'111) + 2P(e011) + P(eIO10)], (3.2-13) i>

where the pattern-dependent error probability, parametric in -, the jamming

'A
fraction, is given by (3.2-12). The program listed in Appendix C was used.

The results in Figure 3.2-2 demonstrate that the BER for L = 2 is

maximized for a particular value of - which depends on Eb/NJ. For the case

of Eb/NO = 15 dB, h = 0.7, and D = 1.0 as s'-own in the figure, we can observe
b 0.

that the worst-case % value is approximately .'

4/(Eb/NJ ) Eb/Nj 4 = 6 dB; -

WC (3.2-14)
1 , Eb,/NJ < 6 dB;

for high Eb/NO. From Figure 3.2-2 we can develop the plots of BER vs. S

Eb/NJ shown in Figure 3.2-3, for fullband jamming (Y = 1) and for worst-case

partial-band jamming (, = >W) It is clear that the jamming is significantly

more effective using = WC than using = 1, when Eb/NJ > 6 dB. For example,
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a 10-4 BER requires Eb/NJ = 20.5 dB when Y : 1, but Eb/NJ 37.6 dB when

= u a 17.1 dB difference. We note that the worst-case BER tends to

exhibit an inverse-linear dependence upon Eb/NJ when Eb/N d > 6 dB; that is,

PWC z .58/(Eb/NJ), Eb/NJ > 6 dB, (3.2-15)

for high Eb/NO. This BER is averaged over the data patterns; it is interesting 4.

to note that the worst-case BER for each pattern also tends to have the same

kind of dependence upon Eb/NJ, with the coefficients being approximately

.74 for 111, .58 for 011, and .42 for 010. Thus an analysis based on only

the "middle" case of 011 would have actually represented the average in this

instance.

Recalling that PWC z'21/(Eb/Nj) for L = 1, we observe that the linear

diversity combining of two differential phase samples does not improve the -

. system's performance, but rather degrades it by about 4.4 dB. This difference

p.' is partly understood from the fact that, under a bit energy constraint,

S2 (E b/No) and T = 1 (Eb/NT) for L = 2. But this fact only accounts for a
N 2 b 0 T 2 b T

3 dB difference. The entire 4.4 dB difference may be attributed to noncoherent

combining losses, which evidently are so great for linear combining of CPFSK

differential phase samples that even under an equal power constraint

(-N = Eb/No' etc.), L = 2 gives a worse result than L = 1.

For example, with no jamming, Eb/N 0 = 15 dB yields a BER of 1.83 x 10

for L = 1, and 8.3 - 10-6 for L = 2; this difference in performance is equivalent

to about 3.2 dB in Eb/NO. So, even without jamming, the L = 2 combining losses

are great enough to give a worse BER result for an equal power constraint.
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3.2.3 Simplified Calculations

As in Section 3.1.3 for L = 1, we now summarize L = 2 BER results using

the "typical pattern" approach, rather than the exact one involving averaging

over patterns. The simplifying case is that of = r/2, r 0 = , and

V =0, which gives

P(e;i,j) = 1 - +, j,O 2 pilPjo f dx qi(x)F.(-x)

pp 1/2

--/2

+ Pi,o Pj,0 f dx qi(x)Fj(-x), (3.2-16a)

'p - r/2

wh ere /2  -U.(1-cosy sinx)
"V. _(i(3. -16

qi(x )  4- dy cos y (1+Ui + Ui cosy sinx)e (3.2-16b)
--/2

and

-/2 -Uj(1+cosy sinx)SCos 1 e
F.(-x) - COSdy (3.2-16c)(X 47 1 + cosy sinx

-72

Using these expressions with U. :a2/L = 0.405i and the click

S' "probability formulas in (3.1-30) gives a worst-case BER of

S.50 (3.2-17)

for high Eb/ J , in the linear portion of the error curve. It is interesting

that this L = 2 "typical" BER is better than the exact L = 2 performance,

whereas for L = 1 the typical BER is worse, but no explanation is immediately

apparent.
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3.3 BER COMPUTATIONS FOR L > 2

The intricacy of the FH/CPFSK BER calculation was seen in the last

subsection to be considerable for L = 2, with corresponding amounts of computer

time needed. In the following material we summarize the extension to L > 2

of the direct, or convolutional, analysis approach used previously. We also

introduce another numerical approach which is designed to control the amount

of computation required to evaluate the BER. Finally, numerical results for

worst-case BER when L > 2 are presented which indicate the failure of linear . '

diversity combining to achieve an improvement in the system performance

against worst-case partial-band jamming.

3.3.1 Methodology Using Direct Approach
o-,

Assuming that the pdf for the sum of L-1 diversity samples can be

calculated, given 
by

P(L-1)x: f(L)(+2n; (3.3-1)

n=O

in the notation of Section 3.1, we can formulate the BER for the sum of L

samples in terms of this pdf and the L = I pdf. It can be shown that _ ..

.1 , ,

nmax n

P(e, ) 1 - n . mn (3.3-2) .

where nmax is the number of significant clicks, given by (2.2-22b), and

B(L) is the probability that the sum is positive when there are m clicks -m,n-m

in the Lth sample and n-m clicks in the sum of the first L-1 samples. .. :.
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That is,

DIU ( (1I +-)1 7~nm

B _m d fx (x+2Tm) d ( y2~-)
m,n- I -

f dx f()x y (-)*> 333

m f -m

For example, if L =3 and Lt > r3

P(ej~ I B 0 - (B01+B10 -( 0 +Bll+B 2 ) (3.3-4)
00 01 10) (02 20

where

B00 =J dxf(x)J dy 0~) (3.3-5a)

max[2(A-,vn),-xI

21!~ (2)+7
B0,. 0f1 ~ l(~ dy f2(y) (3.3-5b)

0 1
:-7 -X+2-,

B xf ( ) f dy f (2)(Y) (.-c

Bdx f(1)) dy f2)y (3.3-5d)02 =f0 j2
2 Tr - 24r-x

B11  dx f1()dy f2( (3.3-5e) ,

27-2': f(1)(x~j ()

and
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I.-

6 +1 2(t4+1T)
B20  f dx f l)(x) dy f )(y). (3.3-5f)2 0

Notice in (3.3-3) and (3.3-5) that the integration limits do not depend upon

m; the significance of this fact is that for no jamming, when

S( m(1) p () ( pN _D (3.3-6a) '

and

n = 0,n-m p (Y PN' -)'  (3.3-6b)

then the click probabilities factor out, leaving identical integrals. That

is, for this case

B(L) (1) P (L-1) Cn, (3.3-7a)m,n-m 0'Om On-m n

where

Cn dx p(1x) dy

max[LP-T ,27:n-(L-l)(+)] ) -(L -r),2rn-x]

numerically, the integrals have to be computed once, rather than n + 1 times.

However, for the general case, the click probabilities do not easily factor

out of fm1) and fLm [see (3.2-4), for example], and the double integral

must be computed for each m. In view of the increasingly complex and time-

consuming computations required by the direct method as the order of diversity %

L increases, we have developed numerical methods for implementing a character-

istic function or transform approach. Y -

102 .



FW[ Vv

J. S. LEE ASSOCIATES, INC.

13.3.2 Methodology Using Transform Approach

As we have noted, it is sufficient for BER calculations to model the

single-sample pdf as having a finite maximum number of clicks:

nmax

p (1)(xiB) : fn(x+2n;_). (3.3-8)
n=O

This model is sufficient because numbers of clicks greater than nmax simply

do not necessarily enter into the BER calculation. Given the pdf (3.3-8), the

range of the differential phase (x) which is significant then is

L'-7-27nmax < x < A+r,, (3.3-9)

Since the pdf is zero outside this range, we can consider numerical evaluation

of the characteristic function, by means of the DFT (discrete Fourier transform)

of the pdf. Theoretically, it is well understood that if

I() =J dx e-j2Tx p) (x) = 'qp(1)(x) (3.3-10)

is the characteristic function for one sample, then

L p W*(3.3-11): qp'-(x)1 ,t

that is, the Lth power of ; is the characteristic function for the sum of

L independent and identically-distributed samples. The challenge is to utilize

DFT methods and parameters which will provide sufficient accuracy to evaluate

S""the BER.
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3.3.2.1 DFT Size Considerations

Figure 3.3-1 illustrates the fact that, since the L = I pdf for a given

pattern is nonzero for the range Ap-zT-2rnmax < x < Ap+7r, the L-hop pdf is

nonzero for the range L(Ld-7-2 nmax) < x < L(A+ir). Therefore, to avoid 71-

aliasing, the N-point DFT must consider pdf samples on an interval at least . . ,

as long as p

X = Nix > L(nmax+1)2T radians. (3.3-12) (

From (2.2-22b), a conservative estimate of nmax, the number of "significant"

clicks, is nmax = L-1. Thus the interval should be at least L227 radians in

length. At the same time, it is convenient to stipulate that in 7 radians

there are exactly an integer number of sampling intervals, that is, '

- integer no (3.3-13) V V
_x •*

This implies that

X =Nix =N .T/n 0  242; (3.3-14a)

or that the DFT size N is bounded by

N > 21 2/Ax = 2L2n0  (3.3-14b)
0V

For example, if we specify that no = 128 samples are desired over radians .' V
0p

x r/128), then the following DFT sizes are required:

1044
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L(,." -- rnala x) LzL (L,+T)

L.,, L(L:+--. l+r+27nmax) =L(nmax+l)2r ._Ii

FIGURE 3.3-1 RANGE OF DIFFERENTIAL PHASES WITH NONZERO PDF FOR ONE AND
FOR L HOPS/BIT
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L minimum N preferred N

1 256 256

2 1024 2048

3 2304 4096

4 4096 8192

In this table, we choose a "preferred N" value that is the next higher ,ower

of two, in order to provide "zero fill" for interpolating the characteristic

function with more closely-spaced points in the transform domain. It seems

unlikely, however, that there is any "best" window or window length in this

application of the DFT, since the effective width (standard deviation) of the

pdf will vary with SNR, and it is impractical to try to match the two widths

in some sense for each SNR value.

3.3.2.2 Formulation of BER Using DFT

The strategy we have adopted for calculating the BER is designed to

exploit the fact that a finite number of clicks is involved in calculation

of the probability of a correct decision, P(C) = 1-P(e). Thus our approach

is to utilize DFT methods to calculate

P(C) = [P(C1111) + 2P(ClOIl) + P(C 010)], (3.3-15)

where the conditional probability of a correct decision is

L(2v+ T)
P(C_ dx p(L)

rL(L-:+) r=  ej. + ^-j y(1) 1.L
:J dxJ dve~x[ dy ~iv (Y!9_) j.(3.3-16) : :

o-- A¢- -2irnmax

RK

0106S-L
j27-.) x * * jj*v (1)
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we use Simpson's rule to perform the outer integral, with the L-diversity

Ac pdf apprexirmated by

-J-1 N-i
P(L)(mx) - v rz ej 27mr x. v Y z e-J21rnYyAvl(nY)] L, (3.3-17)

r=O L n=0

- in which p is the periodic extension of p(1 ). Since x = A~y X/N and

L-, = l/X, then .x • ,y = 1/N and (3.3-17) becomes

p(L)('x LO1FTj [DFT(p). (3.3-18) ~

The use of the inverse OFT (IDFT) in (3.3-17) and (3.3-18) is based

on the fact that the finite Fourier transform of the periodic extension of the

(finite domain) L = 1 pdf is (a) equal to the pdf's characteristic function

at the points = n :., and (b) periodic with period 1//x when the finite

. Fourier transform is approximated by a OFT. That is,

-(1)

ox
, dx e-j2v x  p(1) (x+kX)
0 k=-'

X 0
dx ej 2 x p(1)(x) + eJ2 VX dx e- p (x)I f10 -X

= 1)( v = n- -1v n/X; (3.3-19) 0
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and if

ON = DFT{ (x) } (3.3-20a)

then -.

(N [(n+N)Lv] N)(nL-). (3.3-20b) ;'

Therefore approximating the inverse Fourier transform integral by a summation

from = - N-./2 to. = Nv./2 is the same as a summation from v = 0 to

" (N-I):.

The approximation, besides utilizing a discrete sum to calculate

an integral, is predicated on the characteristic function's vanishing for

- N.,/2; otherwise, it will be distorted due to aliasing. This

vanishing never exactly occurs, since the pdf is nonzero over a finite

interval. However, the more smoothly the pdf decreases at its end points, 1. Z,

the less "bandwidth" is required, and aliasing of the characteristic

function is minimized. For example, the least "smooth" pdf occurs for zero

SNR, and is given by ;.. "

nmax -

= 7 & p=0u(-7-+2n-) -u(L.+i7+2n 7)] (3.3-21)
n=G

in which u(.) is the unit step function and the{ pn } are click probabilities.

The magnitude of the corresponding characteristic function is bounded by

1-
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rW(for =N:,,/2 and A x r i1128. (3.3-22)
228

This is 26 dB down from the maximum value of P(O) = 1. A triangular pdf

for no clicks would be 52 dB down at the N/2 folding point, and a Gaussian

density with o = 1/, would be down the following amounts for different SNR

values, c , and -x =T/128:

Attenuati on
Bound at Nwv/2

S2
(expression) 0.54/ (Ax) 2 (dB) "'

0 dB 901 dB

10 dB 90 dB

20 dB 9 dB.i

3.3.2.3 Normalizations

Referring now to equations (3.3-16) and (3.3-17), the characteristic

function for L = 1 is approximated by

ai. " +4 ,

dx(1(, 7 .dx p (1)(x) X DFT {p. (3.3.23)::! "'-7-2nmax,:'

As a means for controlling the approximation error, we utilize the fact

that
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nma x -Q

( (0) = Z [(l'-)Pon + YPl,n ].  (3.3-24)

n=O

Therefore for each intersymbol ,nterference pattern we adjust the DFT 4

values by a normalization factor to produce

DFT(k) = DFT(k_ (3.3-25a)NF

where
NF =  X • DFT(O)/ (1)(O). (3.3-25b) "'

3.3.2.4 Averaging Over Data Patterns

To minimize the number of inverse DFT operations, we perform averaging

over data patterns prior to the inverse DFT. That is, the pdf for the diversity

sum is computed as

p(k)(mLx) = xk-I IDFT [OFT (p,111)/NF(111)] LI L
+ i[BET (pOI!)/NF(OII)]L

+ [OFT (p,01O)/NF(010)]L . (3.3-26) "

3.3.3 Results Using DFT Method

Since we previously have calculated the FH/CPFSK bit error probability

for L = 2 by the direct method, the accuracy of the DFT method's results

may be discerned by making comparisons for this case. Also, the values of

the normalization factors for the different patterns give a general indication
4

I

- no \4%;~'.d.d.: -4.;
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of how well the discretized pdf is representing the actual, continuous

distribution.

The worst-case BER was found by computing a few points on BER vs Y curves

like the ones shown in Figure 3.2-2, just enough points to establish the P(e)

maximum with respect to . The program included in Appendix D was used, and

V. each point required between five and ten minutes of computation, depending

on L. Normalization factors typically were between 0.95 and 1.05, indicating

that numerical integration of the L = 1 pdf using 2r/._x = 256 points and a

rectangular rule would yield about a 5% error, if the factors were not

employed. **-..

3.3.3.1 Results for Eb/N 0 = 15 dB

Figure 3.3-2 summarizes the worst-case partial-band noise jamming

performance of FH/CPFSK using discriminator detection and linear diversity

combining. The curves were drawn using the data i,, Table 3.3-1. We have

already noted in Section 3.2 that the L = 2 performance is about 4.4 dB

worst than for L = 1 (no diversity); these previous results of direct

calculation are included in the figure for reference. Worst-case BER results

for L = 2 using the DFT method are also presented for the portion of the graph

lying between 10 and 30 dB. Pictorially, the L = 2 results using the two

different methods are barely distinguishable; the data in Table 3.3-1 indicates

that the DFT method gives a BER about 3% high, relative to the direct method.

This was considered to be an acceptable degree of agreement between the two

methods, so that further development of the computer program, such as more

elaborate normalizations, was not pursued.

N'.N
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FIGURE 3.3-2 WORST-CASE FH/CPFSK BER VS Eb/NJ FOR Eb/NO : 15 dB AND

THE NUMBER OF HOPS/BIT (L) VARIED
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The L = 3 results in Figure 3.3-2 reflect a 2.4 dB worse performance

than for L = 2, when the jammer power is strong (low Eb/N JJ). As Eb/NJ

increases, the BER for this number of hops/bit converges to an asymptote of

about 4 Y 10- 4 , the performance for L = 3 and no jamming. Evidently the

unjammed noncoherent combining loss at Eb/N = 15 dB is about 5.2 dB, because :%

(from Figure 3.1-3) a 4 x 10-  BER for L = 1 occurs for Eb/N 0  9.8 dB. This " .
Jb

loss contrasts with the amount in strong jamming, about 6.8 dB.

As anticipated, the L = 4 results in Figure 3.3-2 follow the trend of the '

BER increasing with L, at least for strong jamming. We observe that

for 15 dB Eb/NOJ - 25 dB, the L = 4 worst-case performance dips below that of
4I

L = 3, before settling to its unjammed value of 9 x 10-  (5.7 dB unjammed

noncoherent combining loss). This phenomenon is very interesting, since we

are seeking a BER behavior which decreases with L. But in this figure, we C

cannot discern the trend because the L 3 and L =4 performances are influenced

so much by thermal noise. .,;

3.? kesults for Eb/N 0 = 20 dB

,n Pigure 3.3-3 we show L = 2, 3, and 4 BER results for Eb/N = 20 dB,
b*0

plotted from the data in Table 3.3-2. For each diversity value (L), the -

thermal noise is not influential that is, the unjammed BER is much less than

-510 so we can observe the trend of the relative performances for L = 3

and L = 4. What we see is the fact that, for negligible thermal noise, the

worst-case BER performance for L = 4 lies between, and parallel to, those for

L = 2 and L = 3. Thus, although a slight improvement is made (about I dB), ; .

there is no "diversity gain" improvement for higher L. If there were such an

improvement, the negative slope of the (log) P(e) curve vs Eb/ in dB would

,S

b _.
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TABLE 3.3-2 DATA FOR FIGURE 3.3-3

L=2 L:3 L:4
Eb/N,

b n
(dB) Pwc "WC PWC YWC P WC Y WC

0 0.329 1.0 0.37 1.0 0.385 1.0

5 0.173 1.0 0.218 1.0 0.263 1.0

7.5 0.17 1..0

10 5.5(2) 0.3 8.6(-2) 0.48 8.9(-2) 0.55

15 1.74(-2) 9.5(-2) 2.8(-2) 0.15 2.6(-2) 0.16

20 5.5(-3) 3.0(-2) 9.0(-3) 4.8(-2) 7.8(-3) 5.0(-2)

25 2.8(-3) 1.5(-2)

30 5.6(-4) 3.0(-3) 9.0(-4) 4.8(-3) 7.8(-4) 5.0(-3)5,.,

40 5.5(-5) 3.0(-4) 9.0(-5) 4.8(-4) 7.7(-5) 5.0(-4)

50 5.5(-6) 3.0(-5) 9.0(-6) 4.8(-5) 7.7(-6) 5.0(-5)

X,

Parameters: Eb/N 0  20 dB, h 0.7, D = 1.0

;..-b 0i
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NS

be greater than unity.

3.3.3.3 Explanation of the Observed Diversity Behavior

What then accounts for the slight worst-case BER improvement going from

L = 3 to L = 4? The apparent explanation can be made with the help of Figures

3.3-4 to 3.3-7. In Figure 3.3-4, we show the pattern-averaged pdf's for a

single hop sample and for the sum of two hop samples when L = 2 for particular

values of',, Eb/NO, and Eb/NJ. The linear scale is such that the click

contributions are not noticeable, so in Figure 3.3-5 we repeat the same

information, using a logarithmic scale. The superposition of the three pattern-

dependent pdf's constituting the averaged pdf for L = I is now evident in .e

Figure 3.3-5, and we call the reader's attention to two properties of the Ile

two-sample pdf: (1) its major peak is shifted to the right, located at 2L¢,

compared to L: for one sample; (2) the width of its lobes are increased over .-

that for one sample. Thus, while for L = 2 the pdf shifts to the right, tending

to decrease the error, it also is spreading out, and furthermore the "mass" under

the one-click lobe is greater than for one sample; both these latter trends

tend to increase the error. t.

In Figures 3.3-6 and 3.3-7 we present similar pdf illustrations, for

L = 3 and L = 4, respectively. The trend is for the nonzero click lobes to

become more significant as L increases, since the SNR is decreasing for

constant bit energy (cN = (Eb/No)/L). However, as L goes from 3 to 4, note

that the peak of the 1-click lobe crosses zero. This means that for high SNR

and L = 4, a correct decision is made even when there is a single click,

whereas for L =3 a correct decision is not made if there are any clicks at all.
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1g.'

Thus L = 4 has a slight advantage over L = 3, but does not offer a "diversity

gain" improvement.

3.3.3.4 Significance of the Divrsity Behavior

The BER results shown in Figures 3.3-2 and 3.3-3 demonstrate the fact

that a diversity gain against worst-case partial-band noise jamming is not

realized for the linear combining of FH/CPFSK differential phase samples from

different hops. The same fact is true for FH/BFSK, but it was plausible to ,

conjecture that the nonlinear demodulation procedures for CPFSK (e.g., the

bandpass limiter) would provide the sort of nonlinear processing that produces _

a diversity gain. Now that this conjecture has been disproved, we observe with

hindsight that the limiter (ideally) has no effect on the phase of the signal,

and that there is no mechanism in the limiter/discriminator receiver which acts

to de-emphasize samples from jammed hops.

It is easy to show that some form of diversity gain is possible with the

appropriate processing, at least for low thermal noise. Consider, for example,

the scheme in which it is assumed that perfect side information is available on

which hops are jammed, and samples from jammed hops are excluded from the =

diversity sum unless all hops are jammed. Then, for no thermal noise, no

error occurs unless all hops are jammed:

P(e) = L Rj), Rj - Eb/NJ ,  (3.3-27) --

.- .1

where gL( .) is the BER vs. Eb/NQ function for the sum of L samples. Differen-

tiation with respect to-, yields the equation

122 "
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L gL(X) + x gL(x) = 0, x - YRj. (3.3-28) Ole

Clearly, if this equation is solved for x = xL9 then the worst-case partial-

band jamming fraction is

RL- R > x

I J

*WC (3.3-29)

Substituting the value of WC back into (3.3-27), we find that

I XL gL(XL ), Rj >xL;-

PW g:R ). R (3.3-31)'" "

That is, PWC is proportional to R-L for R > XL. On a log P(e) vs Eb/N J (dB)

plot, PWC is a straight line with slope -L, tangent to the Y = 1 error curve

at R = xL.

Using data from Tables 3.3-1 and 3.3-2 for -Y= 1, and constructing tangents

with slopes equal to -L, we obtain the predicted ideal diversity performances

for FH/CPFSK in worst-case PBNJ as shown in Figure 3.3-8. The higher L curves

must eventually cross those for lower L because of their greater slope, and

indeed do as shown. The figure illustrates that a diversity gain is realized

for this ideal situation, and if the optimum value of L is always used, the

worst-case BER can be made to approach within 5 or 6 dB of the unjammed CPFSK

performance, compared to over 30 dB without diversity.

123 
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In practice, thermal noise is always present, giving rise to noncoherent

combining losses which prevent achievement of the ideal diversity gains

pictured in Figure 3.3-8. However, these results do suggest that some form

of combining the differential phase samples from the different hops will

accomplish a diversity improvement of some degree. WA
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4.0 EVALUATION OF DIVERSITY PERFORMANCE USING DIFFERENTIAL DETECTION

An alternate receiver configuration for FH/CPFSK is one in which the
4$

limiter-discriminator is replaced with a differential detector, In this

section, we find the BER obtained by FH/CPFSK in partial-band noise jamming ?'

when a differential detector is used.

4.1 ANALYSIS FOR NO DIVERSITY

The analysis of differential detection of narrowband FM presented by

Simon and Wang [11] relies on the phase distribution theory of Pawula, Rice, "

and Roberts [8], applied to the binary FM communications problem by Pawula [3].

The derivation of the error probability using this theory is somewhat involved.

In this section, we present a simple derivation of the binary FM bit .

error rate (BER) using differential detection. -. ,

The differential detector, shown in Figure 4.1-1, develops the output

z(t) R(t)R(t-T)sin[e(t)-6(t-T)] (4.1-1)

from the narrowband waveform

L* x(t) : R(t)cos[ ot + e(t)] (4.1-2a) *

: X(t)cos~ot - Xs(t)sinwot. (4.1-2b) .-
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The rationale for using this detector is that, for binary FM or CPFSK

(continuous phase frequency-shift-keying), the bit information is contained

in the sign of the difference between the signal phase values at bit sampling

times t = kT. The sign of the q antity z at the sampling times therefore can

be used for the bit decision. Without noise x(t) is the signal

s(t) = a(t)v 2 cos[wot + 4(t)] , (4.1-3)

where S is the signal power, a(t) is amplitude modulation induced by the

receiver filtering, and :(t) is the information phase modulation waveform

after distortion due to receiver filtering. Prior to this filtering, the

signal has constant amplitude and the bit information is conveyed by the

instantaneous frequency, which is either f0 + fd for a "mark" or f0 - fd

for a "space". Therefore, neglecting distortion, the phase difference at

tk kT is

- : (tk) - -(tk-T) = ±7h, (4.1-4)

where h = 2fdT is the modulation index.

Our approach to analyzing the BER for the differential detector recognizes

that the random variable z is a quadratic form in the quadrature components

x c(t) and x s(t):

*2 z : [Xs(t)X (t-T)-xc (t)x(t-T)]. (4.1-5)

128
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With this understanding, as shown below we can apply a convenient equivalence

for random variables of this type.

4.1.1 A Statistical Equivalence

Let the four-dimensional vector of random variables x 
= (xl,x 2 ,x3,X4 )

T

be multivariate Gaussian, with mean vector mx = (ml'm2,m3,m4)T and covariance

matrix

0 TIC 102 C 02

K X(r,,) 0 c -c,0102

n-210 2  - C~ 1o2 C (4.1-6)

We use a to denote the transpose of the column vector a. In [12] and [13] it

is shown that the quadratic form

y 1= (XlX 3 + x2x4) (4.1-7)

is equal to the difference of two scaled, independent noncentral chi-squared

random variables with two degrees of freedom, denoted by

y--cjX'(2;dI ) - c2x
2(2;d 2), (4.1-8)

where d1 and d2 are the noncentrality parameters. In terms of the components

of m and Kx , the parameters are

-,x

C = n) (4.1-9a)

2 2 2 2 -172(M M +
0j(m 1 +m2 )+ (m 3+m 4 ) + C 2 /1-2(m 1 m3+m2m4 ) 2oa1 2 t(mlm4 -m2 m) (4.1-9b)
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4.1.2 Application of the Equivalence

Comparing (4.1-5) and (4.1-7), we define

Xc(t) x I

-xs (t-T) x3

xc(t-T) x (4.1-10)

In this case, the mean vector mx is

a(t)/2 coso(t) A1 cosoi

a(t)/2S sine(t) A1 sinol

-a(t-T)V/ ' s'in (t-T) - -A2  sin 2

a(t-T)/VZS cos 0 (t-T) A2 cos02 (4.1-11) '

For stationary bandpass Gaussian noise, a2 = 02 = NoWN where W= W is the

noise bandwidth of the receiver filter, and the autocorrelation function is

R (T) NoWN[r(t) coswoT + x(T)sinWoT]; (4.1-12)

thus = r(T) -r, and n = -A(T) -x. The cross-quadrature correlation

coefficient A is zero if the filter passband is symmetric about the center

frequency f"
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Substituting appropriately in (4.1-8) and (4.1-9), then, we find that the

differential detector output has the distribution

z-. C1 X2(2;dl) - c2 x
2(2,d2 ) (4.1-13a)

with

Cl 2 - NW W) (4.1-13b)

and

= 2 + n2 2 P- --snA-2 'PlP 2 rCOSA (4.1-13c)
1,22 V-_r. -

In (4.1-13c) we define SNR's i. A2 /2N W for i = 1,2. Further, defining

U 5(z+ )/2 and W i we have

2{U - r WcosA + l-r2W sinA} ( -
d = (4.1-14)

,,.

1,3
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lJ ;
4.1.3 BER for L=1 Without Jamming

Now since the quantities U, W, and A0 are affected by intersymbol inter-

ference, the BER must be averaged over possible bit patterns. Using the

symmetry of complementary patterns, the BER can be written

P(e;r,x) = Pr{pattern j} i

X 2 [Pr{z < OAoj,Uj,Wj }

+ Priz > 01 -Aj,Uj,Wj}]

= Z Pr{pattern j} P(e;r,x1AOj,Uj,Wj). (4.1-15) .:.

In view of (4.1-13a) the probability that z is less than zero is known to be C

expressible in terms of Marcum's Q-function and the Io(.) Bessel function [14]:

Pr z 01 ,U W) Q( 5/~-a) + Qva 9.

+1 cc2 a+bl

c1  +c--- exp I0(/jTaj), (4.1-16a)1 '2

where

a c2 I2 (L) -i-{U- rWcos¢ - 1-7i-w sinM} (4.1-16b) "K.

c1+c2  1-r2
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and

b - = - 1 U - rcoso + /1-7W Ono} (4.1-16c)
1+ 2  1-r2

Similarly,

Pr{z > 01-A,U,W}

c -c a0+b1 2 1 e0 a a0 bi) (4.1-17a)

with
c I d') c2 d 2("¢)a0 : c c:I +C 2 a1 (4.1-17b)

and

L - c2d2(-¢) CdC+c) b (4.1-17c)S-= -b1 .1l+2  1l+2

Because a0 = a1 and b0 =b, the terms containing the exponential in (4.1-16a)

and (4.1-17a) cancel when they are averaged to get the conditional BER, resulting in

* P(e; r,X A4,U,W)= [ [1 - Q(vj,/ ) + Q(i,/)]. (4.1-18)
72

4.1.3.1 Comparison with Other Analyses

Note that the expression (4.1-18) does not depend on the cross-quadrature

correlation coefficient >, so this quantity can be assumed equal to zero for
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convenience. This same kind of symmetry (for equally probable data symbols) %Id

has been noted for DPSK [13], [16] with respect to r, the same-quadrature

correlation coefficient.

The conditional binary FM error probability given by (4.1-18) can be

shown [7, p 85] to be identical with the expressions given in [11]:

P(e; r,oJA¢, U, W) = 1 [1 - vI-'2/c2 le(a/a,a)], (4.1-19a)
2

where Ie(.,.) is the Rice function, with -
"2-'.

= (al+bl)/2 , = (4.1-19b) ."

Calculations of (4.1-19) involve numerical integration, since an equivalent

expression is [11] J
1T .T expf -c-Bcose)]

P(e; r, 01A¢, U, W) 2 j d _ cose (4.1-20)
f

I

Accurate calculation of the BER using (4.1-18) involving Marcum's Q-function

is considered easier because of the possibility of a singularity in the inte-

grand of (4.1-20).

It is noteworthy that the error expression (4.1-19a) represents the

general form for the BER for any modulation scheme for which the receiver output

at the sampling instant can be written as
'-

z = R cos(¢1±+2), R >0, (4.1-21) .

1344
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with :1 and 'z distributed as the phase of a sinusoid in noise. This

observation, due to Jain [17], is applied by him (with our parameters r=X=O

and L =/2) to undistorted detection of (a) hard-limited PSK with a perfect

reference, (b) PSK with a noisy reference, (c) DPSK with differential detection -

(p =p-) (d) binary FM with discriminator detection and without integrate-and-

dump output filtering (cj:u), and (e) BFSK.

4.1.3.2 A Useful Approximation

The noncentral chi-squared distribution with v degrees of freedom and

noncentrality parameter d is well approximated by ([18],[19]) S

'.'

Pr-, >xx,d! " Q(x -(v,-1)/2 - 'd + (v -1)/2), (4.1-22)

where Q(.) (with one argument) is the Gaussian complementary distribution

function. Therefore, Marcum's Q-function is approximated byLis

Q(:,,i) = Pr,: > 12,a } •

Q(vK - 1/2 - + 1/2) (4.1-23a) ,.,..

z Q( - a) (4.1-23b) .

The conditional BER (4.1-18) then is approximated by

P(e;r,O b:,U,W) z Q(V 1 - j )"  (4.1-24)
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:

For differential detection of narrowband digital FM, averaging the 10

conditional BER over bit patterns gives the unconditional error probability .

P(e) = {[P(eJO00) + P(el111)]

+ 2[P(eOll) + P(elO0)] :: i
I.

+ [P(e!010) + P(el101)]}. (4.1-25) 1"

To evaluate the accuracy of the approximation given by (4.1-24), and to

compare the exact formula (4.1-18) with the results presented in [11], we use

the sample case of h = 0.7, D = 1.0, and 0 0. The exact values for U, W,

and ': needed to calculate a I and b I according to (4.1-16) were given in

Table 2.1-3, and the same-quadrature correlation coefficient equals

e = .0432. Since in [11] the parameters for the 011 and 100 patterns are "

approximated, we shall use the approximate formulas

U (011) . [U(111) + U(010)], (4.1-26a)

2SW (011) M"U lll) U(OIO), (4.1-26b) .2.

and " .

;(011) z" r2 (111) + A¢(010)]. (4.1-26c)2

The BER for this example case is shown plotted against Eb/N 0 in Figure 4.1-2. - N

These results indicate that the approximation tends to give a low estimate of .

the BER, but is quite good for high SNR.
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4.1.4 BER for L = 1 With Jamming

The case of partial-band noise jamming for L : 1 hop/bit can be treated

as an extension of the unjammed case in the following way:

P(e; -):(1 - -Y)Pa + (Pb (4.1-27) .;.'

a b

in which

Pa = pattern-averaged BER for CNR = Eb/N 0  (4.1-28a) --

Pb = pattern-averaged BER for CNR = Eb/NT' (4.1-28b)

where the averaging is of the conditional BER given by (4.1-18) over the

pattern-dependent quantities U, W, and A as listed in Table 2.1-3.

Numerical calculations of the L = 1 jammed BER are included in the ,

next section, and are computed as a special case of the L > 1 BEP. expression

developed there.

.13

5-

,5

" . o,
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, ?..,5
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4.2 ANALYSIS FOR DIVERSITY SUM

The differential detector BER performance for FH/CPFSK using diversity

may be expressed as

PL (e) = 1 (e111 ) + 2P( e 011) + PL(eOO)} (4.2-1)
L L~'11 2PL~eP~I1)

whcre L is the number of hops per bit, and

PL(e'xly) = (L ( - )L-  y PL(elxly,R). (4.2-2) _

.4. ;=0

In this expression, the possible partial-band jamming events are indexed by

the number of hops jammed out of L for a particular jamming event. As a

function of the jamming bandwidth fraction Y, the probability of the event

i s

Pr. hops jammed' (1. (1-,)L- y (4.2-3)

4.2.1 Derivation of Conditional Error Probability

The decision statistic for L hops/bit diversity is the sum of samples

of the differential detector output. As was shown in Section 4.1, each*4..

sample is equivalent to the difference of two equally-scaled noncentral

chi-squared random variables, when the cross-quadrature correlation "-4

'.4.g °4

IV
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coefficient ', is zero:

Zk-- Ci[ ip( 2 ;dil) - x2(2;di 2)] , (4.2-4a)

i1*

where the jamming condition is denoted by

0,.-

0, hop unjammedi 3=., hop jammed. (4.2-4b)

From Section 4.1, we have

= i cI  Kco; (4.2-5a)
Co 4 -N

with the definition

T (Eb/No)
K (Eb/NT) (4.2-5b)

Since the probability of error is not affected by uniform scaling of the "

samples, we may simplify matters somewhat by using

c0 = 1, c1 
= K. (4.2-5c)4- -4,

In (4.2-4a), the noncentrality parameters di, and d2 i for a particular

data pattern are given by

14

, 140 :I
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U N -r W N cOA _0 s- W N sinA¢
d Wr(4.2-6a)

-01 02  U

and
d (do1,do2)/K, (4.2-6b)

with U and W being SNR parameters and L being the (distorted) differential

phase in the absence of noise. The SNR is related to the bit energy-to-noise

density ratio by
EI

1N b (4.2-7)
0

Since chi-squared variables combine to form chi-squared variables with

higher degrees of freedom, the diversity sum for £ hops jammed is distributed

.,.as 
I

L
z= Zk"-'[2(L-;);(L-,)d 0 1]- x [2(L- ):(L- )d02] _.

r+ K-(2;1;*d1 ) - K".X(2;;d 12 ). (4.2-8)

4.2.1.1 Characteristic Function for Sum
The characteristic function for a chi-squared random variable with 2n

degrees of freedom and noncentrality parameter d is I

j1 j\vd(v;n,d) = E ;e n exp (4.2-9)

(-2jv) n  1-2jv

141
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Therefore, the characteristic function for z is

lip ) =' 2[K;L-k,(L-k)doI] x2[-V;L-9,(L-d0

× 4P,2[ Kv ; d ' ,dl ] 2[-Kv ; 'd 2 k,, d

x 1x 1 2 1

=[i+4v2]-(L- ) [l42)2]-z ,

-4>2L- )A + 2j-,L-Z)B + -4Kv 2 A + 2vB (4.2-10)

S1 + 4 ,~2 1 + 4K2v2  f

in which

A = d + d02 = 2(UN - rWN cos )/(l-r2 ) (4.2-11a) '

B = d d = 2W sin.:/V -/J-:. (4.2-11b) "'
01 2 N

4.2.1.2 BER From Characteristic Function

The cumulative probability distribution for a random variable may be

written in terms of its characteristic function as follows [20]: - V

PrIz 1 d im- z (v)e- j . (4.2-12) ."
2 7 -

Therefore the BER is given by

P(e) = Pr{z < O} - (4.2-13)

142
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Application to the conditional probability of error leads to
.Zw

Pd(eix1y) - [1+ 4 V2 ](L - ) [1+4K2v2]" -'.PL f l,) , v=.

0

x exp I-4v2(L-z)A +-4v 2 KkA

1+4v 2  1+4K 2v2

× sin 2v(L-z)B + 2vzB (4.2-14)
1+4v 2  1+4K 2V2

The integral in (4.2-14) may be converted to one with a finite interval of

integration by using the following change of variable:

nCuS- (4.2-15a) .
2 1 + sin-

for which

1 dA-i= - (4.2-15b) I

The resulting expression is . ,

1 1 -12 de (l+sine'L ["+(K2-1)(1-sin")/2]
L 2 7 f c s' 2 [

sin cose L-k + 2 (4.2-16)

2 42+(K1)(lsine)JJ
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4.2.2 Numerical Results for Differential Detection

The BER for the differential detection of L hops/bit FH/CPFSK in partial-

band noise jamming was computed as

PL(e) = 1 I PL(e1111) + 2PL(e1011) + PL(e1010)}, (4.2-17)

where L

P (ej ) = O(L)(-))L-i; PL(e{S.z) (4.2-18) .>.

and the conditional probabilities PL(eI_ ,t) are given by (4.2-16), using

A = 2(UN - rWN cost)/(l - r2) (4.2-19a)

B = 2W Nsin-*:/,'l - .r (4.2-19b) i-.

The subscript "N" denotes that U and W are calculated using

CNR E/N. (4.2-19c)

The value of the parameter K in (4.2-16) is

K = (Eb/N0/(Eb/NT). (4.2-20)

For the results shown below, we have used E/N= 15 dB and D = WIF .
b 0 IF

Figures 4.2-1 through 4.2-3 show the L = 1 performance of the differential

detector as a function of Eb/NJ. and parametric in -y, the fraction of the hop

band which is jammed. The figures differ in that h values of 0.70, 0.65, and

0.60 are used, respectively. This assortment of values for the modulation .

index was used because, as we have shown, h = 0.7 (and D = 1) are considered

best values for no jamming, while in [111 h = 0.6 (and D = 0.75) are said to

be best values for the jamming case.

In comparison with Figure 3.1-5, we first note that all three of the "

differential detection results for L 1 1 exhibit a higher jammed BER than ...

that obtained using discriminator detection. This is not surprising, since .

differential detection is known to be less effective than discriminator

detection without jamming. The difference in performance for worst-case Ie .

144
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jamming is about 0.75 dB, for the parameter values used.

Observing now the differences among Figures 4.2-1, 4.2-2, and 4.2-3, we

note that for h = 0.7, there is a definite "curling up" of the parametric

error probability curves at the BER value of 10 . This indicates that the

noise-only error rate is between 10-6 and 10- for h = 0.7. As h is decreased

to 0.65 or 0.6, the "curl" straightens out, indicating better performances in

noise for these values. Thus for noise only, the BER for the differential

detector is quite sensitive to the value of h. For example, for y 1, a

10-5 BER is obtained for the following total SNR values:

h: 0.7 0.65 0.6

Eb/NT: 14.7 dB 13.3 dB 12.6 dB.

This 2 dB spread in wide-band noise performance is not echoed in the worst-

case jamming performance, however. The PWC relations shown in each figure

reflect only a 0.54 dB spread in performance for the h values. Therefore,

the value of h is not as critical in worst-case jamming as it is in Gaussian

noise.

The jammed BER performances for diversity cases of L = 2 and L = 3

differential detector samples added are shown for h = 0.7 in Figures 4.2-4

and 4.2-5, respectively. The worst-case L = 2 performance is 0.36/0.275 =

1.2 dB worse than that for L =1; for L = 3, the worst-case performance is

0.50/0.275 = 2.6 dB worse. More significantly, these worst-case BER results

are uniformly worse for variation in Eb/NJ. having the same inverse-linear

dependence upon Eb/NJ as the L = 1 case. Thus we have demonstrated that

simple diversity summing of differentially-detected FH/CPFSK samples does

not yield a diversity gain.

From [11] we know that diversity combining of hard decisions does
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t

produce a diversity gain for high E b/NO.* Therefore, it is likely that

forms of soft-decision combining exist which are better than hard-decision

combining. We now know that summing of samples (soft decisions) is not

one of them.

%

-
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APPENDIX A -

DERIVATION OF MODULO-2r DIFFERENTIAL

PHASE PDF BY DIRECT METHOD

From Section 2.1.5 of the text, the joint pdf of phases is "

* -p-p ".,

P (d R) = J dR 2  R,R2,%) (A-i)

2 EP

where
R RRIR2 -1 Q

PEp(R, ,R, ) - 12 exp -i QI (A-2) '*',.

with 22'AR1+R2

QI- 2 + + 1- RIR 2 cos(K 2 ) ,

- XR1  cos(- -v) - YR2  cos(,: -w) ".A' '•IA .. ;.

2- 1--. cos( - + <). (A-3) ,

* The parameters ,, X, v, Y, and w are defined in (2.1-37) of the text.

Note that the convention we have adopted is that subscript "1" refers to

quantities at time t1  ts and "2" refers to those at t2  ts - T. Thus, .

for example, - --. This convention is opposite to that in [8].
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A.1 Transformation of Integrals ,

4.. Our derivation begins with a transformation of variables. Let

1 2 4/ ,:

,(A-4)

R u cos( 1L uj-.2 u 0.

The Jacobian is u(I-; 2 )/2. With this transformation, we obtain

P, d-c Cosra du U3 exp{-Q 2  (A-5)4 4.2 J J
-7/2 c

where Q =A u2 - Bu + C (A-6a)
Q2

with A = [1 Cos Cos(,,-.:- )] (A-6b)

S[- otcos( : •+j-

B=(/17) [X cos( - + 4 ) cos(,--v) + Y Cos (2 4 cos(i 2-w)]

_ 1 1 /X 2 +2XY cosa COs(1 1-C2-v+w) + (y
2 X2 )sin .

-"tan 1[ Ycos(2 - si n w - X cos(j + r)si n( -- v) I -"

cos tan -
2  (A-6c)

YcosC -)cos w + X cos(2 4 Z)cos(¢1-¢D-v)

and

C = - [: 4- - 2,- cos(: - ] (A-6d)
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A.2 Integration Over Unneeded Variable

We define the differential phase using the transformation of

variables

X =C - ¢2 PI =X + y

Y or =2 Y (A-7)

with unit Jacobian. Integration of y over a 2r interval yields :.'

r/2 2 ,'

p -8c d e-AU2+C lo[u • b(x)] (A-8)p,()-8T d COS) d u

where

b(x) 11 X2 + + 2XY cos-, cos(x-v+w) + (y2-x 2 ) sina (A-9)

A.3 Solution for Inner Integral

Using the integral
2!

f du u3 e"Au2 I0 (bu) = 2 f dy y e- 2Ay I 0 (b,y)

' , ,:-..

2 b2(2A)2  1I( 2;1; ) :,

22 L ) i + ] , (A-10)
'.2 exp (4 4

(2A) . 4
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"b,-

we obtain the pdf expression

r/ 2 Cosa

p (x) - f da(2A)c exp{-C + + (A-11)
J(() 47 2A )2 4A ~ 1 4A
-rr/2

A.4 Identification of Parameters *'..

From before,

100

- 2A = 1 - -cosa cos(x+-)

= I - (r cosx - ;sinx)cosa. (A-12)

Now, 4Aco.L"
b- 1 °w

4A + -2 .T- +P)

1 X2 + y2 + 2XY cosa cos(x-v+w) + (Y2 X2 )sina
-r cosx - /,sinx) cosa %

U + V sin, - W cosa cos(x-AI) : E (A-13) -
1 - (rcosx - sinx)cosa

and 5- N

1+ = 1- E + C .TA%

u W(r cosLc - sinL) (A-14)

Therefore
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'-a

p (x) =1-'P [/2 da coscx e-E 21-E+2 U-W(rcosA -xsi nAt) (A-15) ~4r f [1-(rcosx- Xsinx)cosa 1 -

Finally, changing the sign of the integration variable a, and that of x, gives

the same expression as (2.1-55). The first sign change is arbitrary. The

second reflects a different defining convention for x.

OR

'4."

4°.

4 4



J. S. LEE ASSOCIATES, INC.

APPENDIX B

A GENERAL PURPOSE PROGRAM FOR THE CPFSK ERROR PROBABILITY

The FORTRAN -77 program listed below computes the CPFSK bit error

probability, including clicks, under the following assumptions:

(a) Given post-I.F. SNR (CNR), modulation index h = 2fdT,

and filter bandwidth-time product D = WIFT; Gaussian-

shaped spectrum.

(b) Only intersymbol interference effects due to adjacent

bits are significant; eye pattern (differential phase)

components contain only harmonics with frequencies

- Rb = I/T.

In addition to additive white Gaussian noise, the receiver is assumed to

be subject to Gaussian noise interference with Gaussian-shaped spectrum with

given SIR, bandwidth, and center frequency defined prior to the receiver filter.
. " The bandwidth of this interference is specified by the input parameter

W WI/W IF' (B-i)

and its frequency location relative to the signal carrier is specified by the

- parameter
mL

ON 2(f f c )T. (B-2)
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The program computes the error using the F function given by (2.1-56), and

exploits symmetries to calculate

P(e) (P + 2P+ P(B-3)

where
P [i [P(e!x.OY) + P(elxilyi)] -.

2 1

Pci[F(O; ti) 2 F( 1,i 1;L+i)

12

+ F(r-Li; - 4i)] + 1-Pci;)

and Pci = exp{- Nciil (B-5)

The patterns are specified by

Xo = Y
x0 y 0
x1  0, Y, 1 (B-6)

x2 = Y2 = 0,

and the pattern-dependent parameters are listed in Tables 2.1-1 and 2.1-3 of .,

the text.

For no jamming or partial-band jamming, we use the input parameters

SIR >> 1, = 0, and E >> 1, with the SNR in the program being Eb/NoD when

not jammed, or Eb/NTD when jammed.

U '
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APPENDIX× C

A PROGRAM FOR THE CPFSK ERROR PROBABILITY WHEN L : 2 HOPS/BIT 5
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